【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長(zhǎng);
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).
【答案】(1)證明見試題解析;(2)5;(3).
【解析】
試題(1)公共角和直角兩個(gè)角相等,所以相似.(2)由(1)可得三角形相似比,設(shè)BD=x,CD,BD,BO用x表示出來,所以可得BD長(zhǎng).(3)同(2)原理,BD=B′D=x,
AB′,B′O,BO用x表示,利用等腰三角形求BD長(zhǎng).
試題解析:
(1)證明:∵DO⊥AB,∴∠DOB=90°,
∴∠ACB=∠DOB=90°,
又∵∠B=∠B.∴△DOB∽△ACB.
(2)∵AD 平分∠CAB,DC⊥AC,DO⊥AB,
∴DO=DC,
在 Rt△ABC 中,AC=6,BC=,8,∴AB=10,
∵△DOB∽△ACB,
∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,
設(shè)BD=x,則DO=DC=x,BO=x,
∵CD+BD=8,∴x+x=8,解得x=,5,即:BD=5.
(3)∵點(diǎn)B 與點(diǎn)B′關(guān)于直線DO 對(duì)稱,∴∠B=∠OB′D,
BO=B′O=x,BD=B′D=x,
∵∠B 為銳角,∴∠OB′D 也為銳角,∴∠AB′D 為鈍角,
∴當(dāng)△AB′D 是等腰三角形時(shí),AB′=DB′,
∵AB′+B′O+BO=10,
∴x+x+x=10,解得x=,即BD=,
∴當(dāng)△AB′D 為等腰三角形時(shí),BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB⊥軸于B且S△ABO =.
(1)求這兩個(gè)函數(shù)的解析式.
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C和直線AC與x軸的交點(diǎn)D的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)若P、Q分別從A、B同時(shí)出發(fā),那么幾秒后△PBQ的面積等于4cm2?
(2)如果P、Q分別從A、B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?
(3)在(1)中,△PBQ的面積能否等于7cm2? 請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑等于5 cm的圓內(nèi)有長(zhǎng)為cm的弦,則此弦所對(duì)的圓周角為
A.60°B.120°C.60°或120°D.30°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和都是等邊三角形,且點(diǎn)A、C、E在同一直線上,與、分別交于點(diǎn)F、M,與交于點(diǎn)N.下列結(jié)論正確的是_______(寫出所有正確結(jié)論的序號(hào)).
①;②;③;④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y1=﹣2x經(jīng)過點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)y2=(k≠0)的圖象上.
(1)求點(diǎn)P的坐標(biāo);
(2)求反比例函數(shù)的解析式,并直接寫出當(dāng)y2<2時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天上午7:30,小芳在家通過滴滴打車軟件打車前往動(dòng)車站搭乘當(dāng)天上午8:30的動(dòng)車.記汽車的行駛時(shí)間為t小時(shí),行駛速度為v千米/小時(shí)(汽車行駛速度不超過60千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:
V(千米/小時(shí)) | 20 | 30 | 40 | 50 | 60 |
T(小時(shí)) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根據(jù)表中的數(shù)據(jù)描點(diǎn),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;
(2)若小芳從開始打車到上車用了10分鐘,小芳想在動(dòng)車出發(fā)前半小時(shí)到達(dá)動(dòng)車站,若汽車的平均速度為32千米/小時(shí),小芳能否在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站?請(qǐng)說明理由;
(3)若汽車到達(dá)動(dòng)車站的行駛時(shí)間t滿足0.3<t<0.5,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)點(diǎn)P是線段BC下方的拋物線上一點(diǎn),過點(diǎn)P作PD⊥BC交BC于點(diǎn)D,過點(diǎn)P作EP∥y軸交BC于點(diǎn)E.點(diǎn)MN是直線BC上兩個(gè)動(dòng)點(diǎn)且MN=AO(xM<xN).當(dāng)DE長(zhǎng)度最大時(shí),求PM+MN﹣BN的最小值.
(2)將點(diǎn)A向左移動(dòng)3個(gè)單位得點(diǎn)G,△GOC延直線BC平移運(yùn)動(dòng)得到三角形△G'O′C'(兩三角形可重合),則在平面內(nèi)是否存在點(diǎn)G',使得△G′BC為等腰三角形,若存在,直接寫出滿足條件的所有點(diǎn)G′的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com