【題目】當(dāng)-2≤x≤1時(shí),二次函數(shù)若 有最大值4,則m的值為_____.
【答案】2或-
【解析】求出二次函數(shù)對(duì)稱軸為直線x=m,再分m<-2,-2≤m≤1,m>1三種情況,根據(jù)二次函數(shù)的增減性列方程求解即可.
解:二次函數(shù)對(duì)稱軸為直線x=m,①m<-2時(shí),x=-2取得最大值,-(-2-m)2+m2+1=4,
解得,m=-,∵->-2,∴不符合題意,②-2≤m≤1時(shí),x=m取得最大值,m2+1=4,
解得m=±,所以,m=-,③m>1時(shí),x=1取得最大值,-(1-m)2+m2+1=4,解得,m=2,
綜上所述,m=2或-時(shí),二次函數(shù)有最大值.
“點(diǎn)睛”本題考查了二次函數(shù)的最值問題,主要利用了二次函數(shù)的增減性,解一元二次方程,難點(diǎn)在于分情況討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(x,y)在第三象限,且點(diǎn)P到x軸的距離為3,到y(tǒng)軸的距離為2,則點(diǎn)P的坐標(biāo)是( )
A.(﹣2,﹣3)
B.(﹣2,3)
C.(2,﹣3)
D.(2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國航空母艦“遼寧號(hào)”的滿載排水量為67500噸.將數(shù)67500用科學(xué)記數(shù)法表示為( )
A.0.675×105
B.6.75×104
C.67.5×103
D.675×102
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)角的度數(shù)是40°,那么它的余角的補(bǔ)角度數(shù)是( )
A. 130°B. 140°C. 50°D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列長度的三條線段中,能組成三角形的是( )
A.3cm,5cm,8cm B.8cm,8cm,18cmC.1cm, 1cm,1cmD.3cm,4cm,8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上有三個(gè)洞口A,B,C,老鼠可以從任意一個(gè)洞口跑出,貓為能同時(shí)最省力地顧及三個(gè)洞口(到A,B,C三個(gè)點(diǎn)的距離相等),盡快抓到老鼠,應(yīng)該蹲守在( )
A.△ABC三邊垂直平分線的交點(diǎn)
B.△ABC三條角平分線的交點(diǎn)
C.△ABC三條高所在直線的交點(diǎn)
D.△ABC三條中線的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=-2x2+4x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值及點(diǎn)B的坐標(biāo);
(2)求△ABC的面積;
(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y),使S△ABD=S△ABC,請(qǐng)求出D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,BC=6,∠B=60°,將△ABC沿著射線BC 的方向平移 2 個(gè)單位后,得到△△A′B′C′,連接 A′C,則△A′B′C 的周長為__________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com