【題目】在學(xué)習(xí)了正方形后,數(shù)學(xué)小組的同學(xué)對(duì)正方形進(jìn)行了探究,發(fā)現(xiàn):

1)如圖1,在正方形ABCD中,點(diǎn)EBC邊上任意一點(diǎn)(點(diǎn)E不與B、C重合),點(diǎn)F在線段AE上,過(guò)點(diǎn)F的直線MNAE,分別交AB、CD于點(diǎn)MN . 此時(shí),有結(jié)論AE=MN,請(qǐng)進(jìn)行證明;

2)如圖2:當(dāng)點(diǎn)FAE中點(diǎn)時(shí),其他條件不變,連接正方形的對(duì)角線BD, MN BD交于點(diǎn)G,連接BF,此時(shí)有結(jié)論:BF= FG,請(qǐng)利用圖2做出證明.

3)如圖3:當(dāng)點(diǎn)E為直線BC上的動(dòng)點(diǎn)時(shí),如果(2)中的其他條件不變,直線MN分別交直線ABCD于點(diǎn)M、N,請(qǐng)你直接寫(xiě)出線段AEMN之間的數(shù)量關(guān)系、線段BFFG之間的數(shù)量關(guān)系.

1 2 3

【答案】(1)證明見(jiàn)解析;

(2)證明見(jiàn)解析;

(3)AE MN的數(shù)量關(guān)系是:AE= MN ,BFFG的數(shù)量關(guān)系是: BF= FG

【解析】(1)作輔助線,構(gòu)建平行四邊形PMND,再證明△ABE≌△DAP,即可得出結(jié)論;

(2)連接AG、EG、CG,構(gòu)建全等三角形和直角三角形,證明AG=EG=CG,再根據(jù)四邊形的內(nèi)角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜邊上的中線等于斜邊的一半得BF=AE,F(xiàn)G=AE,則BF=GF;

(3)①AE=MN,證明△AEB≌△NMQ;

②BF=FG,同理得出BF和FG分別是直角△AEB和直角△AGF斜邊上的中線,則 BF=AE,F(xiàn)G=AE,所以BF=FG.

證明:

(1)在圖1中,過(guò)點(diǎn)DPDMNABP,則∠APD=AMN

正方形ABCD

AB = AD,ABDC,∠DAB =B = 90°

四邊形PMND是平行四邊形且PD = MN

B = 90° ∴∠BAE+∠BEA= 90°

MNAEF, ∴∠BAE+∠AMN = 90°

∴∠BEA =AMN =APD

又∵AB = AD,∠B =DAP = 90°

∴△ABE DAP AE = PD = MN

2)在圖2中連接AG、EG、CG

由正方形的軸對(duì)稱(chēng)性 ABG CBG AG = CG,∠GAB=GCB

MNAEFFAE中點(diǎn)∴ AG = EG

EG = CG,∠GEC=GCE GAB=GEC

由圖可知∠GEB+∠GEC=180° GEB+∠GAB =180°

又∵四邊形ABEG的內(nèi)角和為360°,∠ABE= 90° AGE = 90°

RtABE RtAGE中,AE為斜邊,FAE的中點(diǎn),

BF=AE FG= AE BF= FG

3AE MN的數(shù)量關(guān)系是:AE= MN

BFFG的數(shù)量關(guān)系是: BF= FG

“點(diǎn)睛”本題是四邊形的綜合題,考查了正方形、全等三角形、平行四邊形的性質(zhì)與判定,在有中點(diǎn)和直角三角形的前提下,可以利用直角三角形斜邊上的中線等于斜邊的一半來(lái)證明兩條線段相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:若,求m、n的值.

解:∵,

,而,,

,

n=4,m=4

根據(jù)你的觀察,探究下面的問(wèn)題:

(1),則a=______;b=_________

(2)已知ABC的三邊a,b,c滿足=0,

關(guān)于此三角形的形狀的以下命題:①它是等邊三角形;②它屬于等腰三角形:③它屬于銳角三角形;④它不是直角三角形.其中所有正確命題的序號(hào)為________________

(3)已知ABC的三邊長(zhǎng)a、bc都是正整數(shù),且,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科學(xué)研究發(fā)現(xiàn),空氣含氧量y(克/立方米)與海拔高度x(米)之間近似地滿足一次函數(shù)關(guān)系.經(jīng)測(cè)量,在海拔高度為1000米的地方,空氣含氧量約為267克/立方米;在海拔高度為2000米的地方,空氣含氧量約為235克/立方米.

(1)求出y與x的函數(shù)表達(dá)式;

(2)求出海拔高度為0米的地方的空氣含氧量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCAD12cm,BC8cmP,Q分別從A,C同時(shí)出發(fā),P1cm/s的速度由AD運(yùn)動(dòng),Q2cm/s的速度由C出發(fā)向B運(yùn)動(dòng),_____秒后四邊形ABQP是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)已知四邊形ABCD是矩形,對(duì)角線AC和BD相交于點(diǎn)P,若在矩形的上方加一個(gè)DEA,且使DEAC,AEBD

(1)求證:四邊形DEAP是菱形;

(2)若AE=CD,求DPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新新兒童服裝店對(duì)“天使”牌服裝進(jìn)行調(diào)價(jià),其中A型服裝每件的價(jià)格上調(diào)了10%,B型服裝每件的價(jià)格下調(diào)了5%,已知調(diào)價(jià)前買(mǎi)這兩種服裝各一件共花費(fèi)140元,調(diào)價(jià)后買(mǎi)3件A型服裝和2件B型服裝共花費(fèi)350元,則這兩種服裝在調(diào)價(jià)前每件各多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】看圖填空,并在括號(hào)內(nèi)說(shuō)明理由:

BD平分∠ABC(已知)

__________=____________________

又∠1=D(已知)

__________=____________________

______________________________

∴∠ABC+__________=180°__________

又∠ABC=55°(已知)

∴∠BCD=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正ABC的邊長(zhǎng)為2,過(guò)點(diǎn)B的直線lAB,且ABCA′BC′關(guān)于直線l對(duì)稱(chēng),D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是( )

A. 4 B. 3 C. 2 D. 2+

查看答案和解析>>

同步練習(xí)冊(cè)答案