【題目】如圖,花叢中有一路燈桿AB.在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5米.如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
【答案】解:根據題意得:AB⊥BH,CD⊥BH,FG⊥BH, 在Rt△ABE和Rt△CDE中,
∵AB⊥BH,CD⊥BH,
∴CD∥AB,
可證得:
△CDE∽△ABE
∴ ①,
同理: ②,
又CD=FG=1.7m,
由①、②可得:
,
即 ,
解之得:BD=7.5m,
將BD=7.5代入①得:
AB=5.95m≈6.0m.
答:路燈桿AB的高度約為6.0m.
【解析】根據AB⊥BH,CD⊥BH,FG⊥BH,可得:△ABE∽△CDE,則有 和 ,而 ,即 ,從而求出BD的長,再代入前面任意一個等式中,即可求出AB.
【考點精析】通過靈活運用相似三角形的應用,掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解即可以解答此題.
科目:初中數學 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分10分,學生得分均為整數,成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽中,甲、乙兩組學生成績分布的折線統(tǒng)計圖和成績統(tǒng)計分析表如圖所示.
(1)求出下列成績統(tǒng)計分析表中a,b的值:
組別 | 平均分 | 中位數 | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.8 | a | 3.76 | 90% | 30% |
乙組 | b | 7.5 | 1.96 | 80% | 20% |
(2)小英同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面表格判斷,小英是甲、乙哪個組的學生;
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學觀點的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知常數p>0,數列{an}滿足an+1=|p﹣an|+2an+p,n∈N*.
(1)若a1=﹣1,p=1, ①求a4的值;
②求數列{an}的前n項和Sn;
(2)若數列{an}中存在三項ar , as , at(r,s,t∈N*,r<s<t)依次成等差數列,求 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次數學課外實踐活動中,要求測教學樓的高度AB、小剛在D處用高1.5m的測角儀CD,測得教學樓頂端A的仰角為30°,然后向教學樓前進40m到達E,又測得教學樓頂端A的仰角為60°.求這幢教學樓的高度AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知“人字梯”的5個踩檔把梯子等分成6份,從上往下的第二個踩檔與第三個踩檔的正中間處有一條60cm長的綁繩EF,tanα= ,則“人字梯”的頂端離地面的高度AD是cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為DC邊上的點,連接BE,將△BCE繞點C順時針方向旋轉90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數為( )
A.10°
B.15°
C.20°
D.25°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)線段BD與CD有什么數量關系,并說明理由;
(2)當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com