【題目】(1)如圖1,AB∥CD,∠A=35°,∠C=40°,求∠APC的度數(shù).(提示:作PE∥AB).
(2)如圖2,AB∥DC,當(dāng)點P在線段BD上運動時,∠BAP=∠α,∠DCP=∠β,求∠CPA與∠α,∠β之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點P在射線DM上運動,請你直接寫出∠CPA與∠α,∠β之間的數(shù)量關(guān)系______.
【答案】(1)∠APC=75°;(2)∠APC=∠α+∠β,見解析;(3)∠APC=∠α-∠β.
【解析】
(1)過點P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(2)過P作PE∥AD交AC于E,推出AB∥PE∥DC,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)若P在BD延長線上,畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,依據(jù)角的和差關(guān)系即可得出答案.
解:(1)如圖1,過P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A=∠APE,∠C=∠CPE,
∵∠A=35°,∠C=40°,
∴∠APE=35°,∠CPE=40°,
∴∠APC=∠APE+∠CPE=35°+40°=75°;
(2)∠APC=∠α+∠β,
理由是:如圖2,過P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)如圖3,過P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,
∵∠APC=∠APE-∠CPE,
∴∠APC=∠α-∠β.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的長AB=30,寬BC=20.
(1)如圖①,若在矩形ABCD的內(nèi)部沿四周有寬為1的環(huán)形區(qū)域,矩形A′B′C′D′與矩形ABCD相似嗎?請說明理由;
(2)如圖②,當(dāng)x為多少時,矩形ABCD與矩形A′B′C′D′相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點是哪些線段的中點,寫出結(jié)論,并選擇一組給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里有4排日光燈,每排燈各由一個開關(guān)控制,但燈的排數(shù)序號與開關(guān)序號不一定對應(yīng),其中控制第二排燈的開關(guān)已壞(閉合開關(guān)時燈也不亮).
(1)將4個開關(guān)都閉合時,教室里所有燈都亮起的概率是 ;
(2)在4個開關(guān)都閉合的情況下,不知情的雷老師準(zhǔn)備做光學(xué)實驗,由于燈光太強(qiáng),他需要關(guān)掉部分燈,于是隨機(jī)將4個開關(guān)中的2個斷開,請用列表或畫樹狀圖的方法,求恰好關(guān)掉第一排與第三排燈的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把1,2,3,4......按下列方式排列:
(1)按照這樣的排列,第8行的最后一個數(shù)是 ,這個數(shù)的平方根是 ;正中間一列,自上而下第個數(shù)是 (用表示);
(2)求第15行所有數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張質(zhì)地相同并標(biāo)有數(shù)字0,1,2,3的卡片(如圖所示),將卡片洗勻后,背面朝上放在桌面上,第一次任意抽取一張(不放回),第二次再抽一張.用列表法或畫樹狀圖法求兩次所抽卡片上的數(shù)字恰好是方程x2-5x+6=0的兩根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有A,B,C,D四張卡片,其正面分別寫有“、寸、又、日”,有的能獨立成字,有的能組合成字.現(xiàn)四張卡片背面朝上.
(1)任意翻過一張卡片,能獨立成字的概率為________;
(2)先任意翻過一張卡片作為左部偏旁,再任意翻過一張與其組合,請用列表或畫樹狀圖的方法求翻過的兩張卡片恰好能組合成字的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了治理大氣污染,我國西部某市抽取了該市2019年中120天的空氣質(zhì)量指數(shù),繪制了如下不完整的統(tǒng)計圖表:
(1) ; .
(2)請把空氣質(zhì)量指數(shù)的條形統(tǒng)計圖補(bǔ)充完整;
(3)若繪制“空氣質(zhì)量指數(shù)的扇形統(tǒng)計圖”,級別為“優(yōu)”所對應(yīng)扇形的圓心角的度數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com