【題目】以的各邊,在邊的同側(cè)分別作三個(gè)正方形.他們分別是正方形,,,試探究:
如圖中四邊形是什么四邊形?并說(shuō)明理由.
當(dāng)滿足什么條件時(shí),四邊形是矩形?
當(dāng)滿足什么條件時(shí),四邊形是正方形?
【答案】四邊形是平行四邊形,理由見(jiàn)解析;當(dāng)時(shí),平行四邊形是矩形;當(dāng)且時(shí),四邊形是正方形.
【解析】
(1)根據(jù)全等三角形的判定定理SAS證得△BDE≌△BAC,所以全等三角形的對(duì)應(yīng)邊DE=AG.然后利用正方形對(duì)角線的性質(zhì)、周角的定義推知∠EDA+∠DAG=180°,易證ED∥GA;最后由“一組對(duì)邊平行且相等”的判定定理證得結(jié)論;
(2)根據(jù)“矩形的內(nèi)角都是直角”易證∠DAG=90°.然后由周角的定義求得∠BAC=135°;
(3)由“正方形的內(nèi)角都是直角,四條邊都相等”易證∠DAG=90°,且AG=AD.由□ABDI和□ACHG的性質(zhì)證得,AC=AB.
圖中四邊形是平行四邊形.理由如下:
∵四邊形、四邊形、四邊形都是正方形,
∴,,,.
∴(同為的余角).
在和中,
,
∴,
∴,.
∵是正方形的對(duì)角線,
∴.
∵,
∴
∴,
∴四邊形是平行四邊形(一組對(duì)邊平行且相等).
當(dāng)四邊形是矩形時(shí),.
則,
即當(dāng)時(shí),平行四邊形是矩形;
當(dāng)四邊形是正方形時(shí),,且.
由知,當(dāng)時(shí),.
∵四邊形是正方形,
∴.
又∵四邊形是正方形,
∴,
∴.
∴當(dāng)且時(shí),四邊形是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家的號(hào)召,減少污染,某廠家生產(chǎn)出一種節(jié)能又環(huán)保的油電混合動(dòng)力汽車,既可以用油做動(dòng)力行駛,也可以用電做動(dòng)力行駛.這種油電混合動(dòng)力汽車從甲地行駛到乙地,若完全用油做動(dòng)力行駛,費(fèi)用為108元;若完全用電做動(dòng)力行駛,費(fèi)用為36元,已知汽車行駛中每千米用油的費(fèi)用比用電的費(fèi)用多0.6元.
(1)求汽車行駛中每千米用電的費(fèi)用和甲、乙兩地之間的距離.
(2)若汽車從甲地到乙地采用油電混合動(dòng)力行駛,且所需費(fèi)用不超過(guò)60元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)中,邊長(zhǎng)為2的正方形的兩頂點(diǎn)、分別在軸、軸的正半軸上,點(diǎn)在原點(diǎn).現(xiàn)將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在直線上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,邊交直線于點(diǎn),邊交軸于點(diǎn)
(1)求邊在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;
(2)旋轉(zhuǎn)過(guò)程中,當(dāng)和平行時(shí),求正方形旋轉(zhuǎn)的度數(shù);
(3)設(shè)的周長(zhǎng)為,在旋轉(zhuǎn)正方形的過(guò)程中,值是否有變化?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是直線上一點(diǎn).
(1)如圖1,若,點(diǎn)是邊的中點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),求周長(zhǎng)的最小值.
(2)如圖2,若,,是否存在點(diǎn),使以,,為頂點(diǎn)的三角形是等腰三角形,若存在,請(qǐng)直按寫出線段的長(zhǎng)度:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(﹣2,0)、(x1,0),且1<x1<2,與y軸正半軸的交點(diǎn)在(0,2)的下方,在原點(diǎn)的上方.下列結(jié)論:①4a﹣2b+c=0;②2a﹣b<0;③2a﹣b>﹣1;④2a+c<0;⑤b>a;其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,將△ABC沿著AC翻折得到△ADC,如圖(2),將△ADC繞著點(diǎn)A旋轉(zhuǎn)到△AD′C′,連接CD′,當(dāng)CD′∥AB時(shí),四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由邊長(zhǎng)為1的小正方形組成的網(wǎng)格,直線是一條網(wǎng)格線,點(diǎn),在格點(diǎn)上,的三個(gè)頂點(diǎn)都在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.
(1)作出關(guān)于直線對(duì)稱的;
(2)在直線上畫出點(diǎn),使四邊形的周長(zhǎng)最;
(3)在這個(gè)網(wǎng)格中,到點(diǎn)和點(diǎn)的距離相等的格點(diǎn)有_________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com