【題目】已知x的兩個不同的平方根分別是a+3和2a﹣15,且 =4,求x,y的值.

【答案】解:∵x的兩個不同的平方根分別是a+3和2a﹣15, ∴a+3+2a﹣15=0,
解之,得a=4,
∴x=(a+3)2=49,

∴49+y﹣2=64,
解之,得y=17,
即x=49,y=17
【解析】根據(jù)題意可以分別求得x、y的值,本題得以解決.
【考點精析】認真審題,首先需要了解平方根的基礎(如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根),還要掌握立方根(如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a 的立方根(或a 的三次方根);一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC內(nèi)一點,且∠ACP=∠PBC,則∠BPC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A. 了解飛行員視力的達標率應使用抽樣調(diào)查

B. 一組數(shù)據(jù)3,6,6,7,9的中位數(shù)是6

C. 從2000名學生中選200名學生進行抽樣調(diào)查,樣本容量為2000

D. 一組數(shù)據(jù)1,2,3,4,5的方差是10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,解是x=2的是(
A.3x+1=2x﹣1
B.3x﹣1=2x+1
C.3x+2x﹣2=0
D.3x+2x+2=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”,試解答下列問題:

(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關系;
(2)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N,利用(1)的結論,試求∠P的度數(shù);
(3)如果圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a<0,則2a+5|a|等于( )

A. 7a B. -7a C. -3a D. 3a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x22x20的解的情況是( 。

A.有兩個不相等的實數(shù)根B.沒有實數(shù)根

C.有兩個相等的實數(shù)根D.有一個實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)求證:AB∥CD;
(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠ABC=70,∠ACB=60,BE⊥AC于E,CF⊥AB于F,H是BE和CF的交點,則∠EHF=( )

A.100
B.110
C.120
D.130

查看答案和解析>>

同步練習冊答案