【題目】如圖,在平面直角坐標系中,二次函數y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數圖象上的動點.
(1)求二次函數的表達式;
(2)當點P位于第二象限內二次函數的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;
(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.
【答案】(1) y=﹣x2﹣3x+4;(2)當時,S有最大值;(3)點P的橫坐標為﹣2或1或或.
【解析】
(1)將代入,列方程組求出b、c的值即可;
(2)連接PD,作軸交于點G,求出直線的解析式為,設
,則,
,,
當時,S有最大值;
(3)過點P作軸,設,則,
,
根據,列出關于x的方程,解之即可.
解:(1)將、代入,
,
∴二次函數的表達式;
(2)連接,作軸交于點,如圖所示.
在中,
令y=0,得,
∴直線AD的解析式為.
設,則,
,
∴.
,
∴當時,S有最大值.
(3)過點P作軸,設,則,,
,
即
,
當點P在y軸右側時,,
,或,
(舍去)或(舍去),
當點P在y軸左側時,x<0,
,或,
(舍去),或(舍去),
綜上所述,存在點F,使與互余點P的橫坐標為或或或.
科目:初中數學 來源: 題型:
【題目】如圖,四張正面分別寫有1、2、3、4的不透明卡片,它們的背面完全相同,現把它們洗勻,背面朝上放置后,開始游戲游戲規(guī)則如下:
連摸三次,每次隨機摸出一張卡片,并翻開記下卡片上的數字,每次摸出后不放回,如果第三次摸出的卡片上的數字,正好介于第一、二次摸出的卡片上的數字之間,則游戲勝出,否則,游戲失敗問:
若已知小明第一次摸出的數字是4,第二次摸出的數字是2,在這種情況下,小明繼續(xù)游戲,可以獲勝的概率為______.
若已知小明第一次摸出的數字是3,求在這種情況下,小明繼續(xù)游戲,可以獲勝的概率要求列表或用樹狀圖求
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】制作一種產品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據了解,設該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;
(2)根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?
(3)該種材料溫度維持在40℃以上(包括40℃)的時間有多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當20≤t ≤30時,求乙離景點A的路程s與t的函數表達式;
(3)乙出發(fā)后多長時間與甲在途中相遇?
(4)若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據以上信息,回答下列問題:
(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數有 人;
(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數,并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GD⊥AO于點D,交AC于點E,交⊙O于點F,M是GE的中點,連接CF,CM.
(1)判斷CM與⊙O的位置關系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AC邊上的中點,連結BD,把△BDC′沿BD翻折,得到△,DC與AB交于點E,連結,若AD=AC′=2,BD=3則點D到BC的距離為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小明同學設計的“已知底邊及底邊上的高作等腰三角形”的尺規(guī)作圖的過程.
已知:如圖1,線段a和線段b.
求作:△ABC,使得AB=AC,BC=a,BC邊上的高為b.
作法:如圖2,
①作射線BM,并在射線BM上截取BC=a;
②作線段BC的垂直平分線PQ,PQ交BC于D;
③以D為圓心,b為半徑作圓,交PQ于A;
④連接AB和AC.
則△ABC就是所求作的圖形.
根據上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:由作圖可知BC=a,AD=b.
∵PQ為線段BC的垂直平分線,點A在PQ上,
∴AB=AC(______)(填依據).
又∵AD在線段BC的垂直平分線PQ上,
∴AD⊥BC.
∴AD為BC邊上的高,且AD=b.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com