精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,二次函數y=﹣x2+bx+c的圖象與坐標軸交于AB,C三點,其中點B的坐標為(1,0),點C的坐標為(04);點D的坐標為(0,2),點P為二次函數圖象上的動點.

1)求二次函數的表達式;

2)當點P位于第二象限內二次函數的圖象上時,連接AD,AP,以ADAP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;

3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.

【答案】(1) y=﹣x23x+4;(2)時,S有最大值;(3)點P的橫坐標為﹣21.

【解析】

1)將代入,列方程組求出b、c的值即可;

2)連接PD,作軸交于點G,求出直線的解析式為,設

,則,

,

時,S有最大值;

3)過點P軸,設,則,

,

根據,列出關于x的方程,解之即可.

解:(1)將代入,

,

∴二次函數的表達式;

2)連接,作軸交于點,如圖所示.

中,

y0,得,

∴直線AD的解析式為

,則,

,

∴當時,S有最大值

3)過點P軸,設,則,

,

,

當點Py軸右側時,

,或

(舍去)或(舍去),

當點Py軸左側時,x0,

,或,

(舍去),或(舍去),

綜上所述,存在點F,使互余點P的橫坐標為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四張正面分別寫有1、2、34的不透明卡片,它們的背面完全相同,現把它們洗勻,背面朝上放置后,開始游戲游戲規(guī)則如下:

連摸三次,每次隨機摸出一張卡片,并翻開記下卡片上的數字,每次摸出后不放回,如果第三次摸出的卡片上的數字,正好介于第一、二次摸出的卡片上的數字之間,則游戲勝出,否則,游戲失敗問:

若已知小明第一次摸出的數字是4,第二次摸出的數字是2,在這種情況下,小明繼續(xù)游戲,可以獲勝的概率為______

若已知小明第一次摸出的數字是3,求在這種情況下,小明繼續(xù)游戲,可以獲勝的概率要求列表或用樹狀圖求

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】制作一種產品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據了解,設該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數關系式;

2)根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?

3)該種材料溫度維持在40℃以上(包括40℃)的時間有多長?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當20≤t ≤30時,求乙離景點A的路程s與t的函數表達式;

(3)乙出發(fā)后多長時間與甲在途中相遇?

(4)若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據以上信息,回答下列問題:

(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數有 人;

(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數,并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GDAO于點D,交AC于點E,交⊙O于點F,MGE的中點,連接CF,CM.

(1)判斷CM與⊙O的位置關系,并說明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DAC邊上的中點,連結BD,把△BDC′沿BD翻折,得到△DCAB交于點E,連結,若AD=AC′=2,BD=3則點DBC的距離為( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是小明同學設計的已知底邊及底邊上的高作等腰三角形的尺規(guī)作圖的過程.

已知:如圖1,線段a和線段b

求作:ABC,使得AB=ACBC=a,BC邊上的高為b

作法:如圖2

①作射線BM,并在射線BM上截取BC=a;

②作線段BC的垂直平分線PQ,PQBCD;

③以D為圓心,b為半徑作圓,交PQA;

④連接ABAC

ABC就是所求作的圖形.

根據上述作圖過程,回答問題:

1)用直尺和圓規(guī),補全圖2中的圖形;

2)完成下面的證明:

證明:由作圖可知BC=a,AD=b

PQ為線段BC的垂直平分線,點APQ上,

AB=AC______)(填依據).

又∵AD在線段BC的垂直平分線PQ上,

ADBC

ADBC邊上的高,且AD=b

查看答案和解析>>

同步練習冊答案