【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,連接AC、BD,若AC⊥AB,則BD的長度為_______________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內一點,連結CE繞點C順時針旋轉110°,得到線段CF,連結BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小剛用如圖所示的兩個轉盤做配紫色游戲,游戲規(guī)則是:分別旋轉兩個轉盤,若其中一個轉盤轉出了紅色,另一個轉出了藍色則可以配成紫色.此時小剛得1分,否則小明得1分.這個游戲規(guī)則對雙方公平嗎?請說明理由.若你認為不公平,如何修改規(guī)則才能使游戲對雙方公平?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB經過圓心O,交⊙O于點A、C,點D為⊙O上一點,連結AD、OD、BD,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線.
(2)若OA=8,求OA、OD與圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、AC、AD是⊙O的弦,弧BC=弧BD,CE⊥AB于M,交⊙O于E,交AD于F.
(1)如圖1,求證:AF=AC;
(2)如圖2,連接BF、AE、BE,交AD于H,求證:∠DAE=∠EBF;
(3)如圖3,連接BO,并延長交AE于Q,交AD于點G,連接BC,若QG=4,F(xiàn)H=GF,tan∠BCE=1,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分線,過A、C、D三點的圓與斜邊AB交于點E,連接DE.
(1)求BE的長;(2)求△ACD外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運動,到達點C即停止.在整個運動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側作等腰直角三角形PQE.設運動時間為t秒(t>0).
(1)在整個運動過程中,設△ABC與△PQE重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關系式以及相應的自變量t的取值范圍;
(2)當點D在線段AB上時,連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由;
(3)當t=4秒時,以PQ為斜邊在PQ右側作等腰直角三角形PQF,將四邊形PEQF繞點P旋轉,PE與線段AB相交于點M,PF與線段AC相交于點N.試判斷在這一旋轉過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長x之間的函數(shù)關系式以及相應的自變量x的取值范圍;若不發(fā)生變化,求出此定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著某市養(yǎng)老機構(養(yǎng)老機構指社會福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設穩(wěn)步推進,擁有的養(yǎng)老床位不斷增加.
(1)該市的養(yǎng)老床位數(shù)從年底的萬個增長到年底的萬個,求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數(shù)的平均年增長率;
(2)若該市某社區(qū)今年準備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個養(yǎng)老床位),雙人間(個養(yǎng)老床位),三人間(個養(yǎng)老床位),因實際需要,單人間房間數(shù)在至之間(包括和),且雙人間的房間數(shù)是單人間的倍,設規(guī)劃建造單人間的房間數(shù)為.
①若該養(yǎng)老中心建成后可提供養(yǎng)老床位個,求的值;
②直接寫出:該養(yǎng)老中心建成后最多提供養(yǎng)老床位 個;最少提供養(yǎng)老床位 個.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com