【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線AB兩點.

1)求這個拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當t 取何值時,MN有最大值?最大值是多少?

3)在2)的情況下,以A、M、ND為頂點作平行四邊形,求第四個頂點D的坐標.

【答案】1)拋物線解析式為 ;

2)當 t=2 時,MN有最大值為 4

3D0,6)或(0,-2)或(4,4.

【解析】試題分析

1)先由直線分別交y軸、x軸于點A、B這一條件求出點A、B的坐標,將所求坐標代入拋物線列出關(guān)于的值即可得到所求拋物線的解析式;

2如圖1由題意可知點M的橫坐標為t,根據(jù)點M在直線上,點N在(1)中所求拋物線上,可用含“t”的代數(shù)式表達出點M、N的坐標,結(jié)合第一象限中,點N在點M的上方,可用含“t”的代數(shù)式表達出MN的長,把所得式子配方,即可得到所求答案;

(3)由(2)中答案可得求得對應(yīng)的點A、M、N的坐標,如圖2分析可知點D有三種可能,其中兩種情況點Dy軸上,結(jié)合AD=MN,即可求得兩個符合要求的點D1、D2的坐標;由圖可知第三個符合要求點D就是直線D1ND2M的交點,求出兩直線的解析式聯(lián)立成方程組,解方程組即可求得第三個符合要求的點D的坐標.

試題解析

(1)分別交y軸、x軸于A.、B兩點,

∴A、B點的坐標為:A(0,2),B(4,0),

x=0,y=2代入y=x+bx+cc=2,

x=4,y=0,c=2代入y=x+bx+c0=16+4b+2,解得b=

拋物線解析式為: ,

(2)如圖1,由題意可知,直線MN即是直線,

M在直線上,點N在拋物線上,

M、N的坐標分別為,

在第一象限中N在點M的上方,

MN=,

時,MN最長=4;

(3)(2)可知,A(02),M(21),N(25).

A. M、N、D為頂點作平行四邊形,D點的可能位置有三種情形,如圖2所示:

(i)Dy軸上時設(shè)D的坐標為(0,a)

AD=MN,|a2|=4,解得a1=6,a2=2

從而D1(0,6)D2(0,2),

(ii)D不在y軸上時,由圖可知D3D1ND2M的交點,

D1、D2M、N的坐標可求得直線D1N的解析式為y=x+6,直線D2M的解析式為y=x2

解得 ,

D3的坐標為(44),

綜上所述所求的D點坐標為(0,6)(0,2)(44).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題一:如圖1,已知A,C兩點之間的距離為16 cm,甲,乙兩點分別從相距3cmA,B兩點同時出發(fā)到C點,若甲的速度為8 cm/s,乙的速度為6 cm/s,設(shè)乙運動時間為x(s), 甲乙兩點之間距離為y(cm).

(1)當甲追上乙時,x =

(2)請用含x的代數(shù)式表示y

當甲追上乙前,y=

當甲追上乙后,甲到達C之前,y= ;

當甲到達C之后,乙到達C之前,y=

問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應(yīng)鐘表上的弧AB(1小時的間隔),易知AOB=30°

(1)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm;時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm.

(2)若從4:00起計時,求幾分鐘后分針與時針第一次重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣某初中為了創(chuàng)建書香校園,購進了一批圖書.其中的20本某種科普書和30本某種文學(xué)書共花了1080元,經(jīng)了解,購買的科普書的單價比文學(xué)書的單價多4元.

1)購買的科普書和文學(xué)書的單價各多少元?

2)另一所學(xué)校打算用800元購買這兩種圖書,問購進25本文學(xué)書后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:

1)將點陣ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的A1B1C1;

2)連接AA1、BB1,則線段AA1BB1的位置關(guān)系為  、數(shù)量關(guān)系為  .估計線段AA1的長度大約在  AA1  單位長度:(填寫兩個相鄰整數(shù));

3)畫出ABCAB上的高CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙在一段長2000米的直線公路上進行跑步練習,起跑時甲在起點,乙在甲的前面,若甲、乙同時起跑至甲到達終點的過程中,甲乙之間的距離y(米)與 時間x(秒)之間的函數(shù)關(guān)系如圖所示.有下列說法:

①甲的速度為5/秒;②100秒時甲追上乙;③經(jīng)過50秒時甲乙相距50米;④甲到終點時,乙距離終點300.其中正確的說法有( )

A. 4 B. 3

C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,有格點三角形.

1)寫出三個頂點的坐標.

2)將三角形沿方向平移,當點的對應(yīng)點軸上時,畫出平移后的三角形.

3)在給出圖形中找一格點(點除外),使三角形面積相等,并把滿足條件的格點用線連起來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《人民日報》201931日刊載了“2018年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報”.有關(guān)脫貧攻堅的數(shù)據(jù)如下表.

年度

2014

2015

2016

2017

2018

農(nóng)村貧困人口/

7017

5575

4335

3046

1660

貧困發(fā)生率/%

7.2

5.7

4.5

3.1

1.7

1)在給出圖形中,直觀表示近年農(nóng)村貧困人口人數(shù)變化情況.

2)根據(jù)你完善的統(tǒng)計圖,寫兩點你獲得的信息.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出若一個四邊形的兩組對邊乘積之和等于它的兩條對角線的乘積,則稱這個四邊形為巧妙四邊形.

初步思考:(1)寫出你所知道的四邊形是巧妙四邊形的兩種圖形的名稱: ,

2)小敏對巧妙四邊形進行了研究,發(fā)現(xiàn)圓的內(nèi)接四邊形一定是巧妙四邊形.

如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形.

求證:AB·CDBC·ADAC·BD

小敏在解答此題時,利用了相似三角形進行證明,她的方法如下:

BD上取點M,使∠MCBDCA

(請你在下面的空白處完成小敏的證明過程.)

推廣運用如圖②,在四邊形ABCD中,∠AC90°,ADAB,CD2.求AC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P出發(fā),沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P2018次碰到長方形的邊時,點P的坐標為______

【答案】

【解析】

根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應(yīng)的點的坐標即可.

解:如圖所示:經(jīng)過6次反彈后動點回到出發(fā)點,

,

當點P2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,

P的坐標為

故答案為:

【點睛】

此題主要考查了點的坐標的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關(guān)鍵.

型】填空
結(jié)束】
15

【題目】為了保護環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經(jīng)調(diào)查,購買一輛A型車比購買一輛B型車多20萬元,購買2A型車比購買3B型車少60萬元.

請求出ab;

若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

同步練習冊答案