【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.

(1)求證:AE=AF;
(2)求證:BE= (AB+AC).

【答案】
(1)

證明:∵DA平分∠BAC,

∴∠BAD=∠CAD,

∵AD∥EM,

∴∠BAD=∠AEF,∠CAD=∠AFE,

∴∠AEF=∠AFE,

∴AE=AF


(2)

證明:作CG∥EM,交BA的延長線于G.

∵EF∥CG,

∴∠G=∠AEF,∠ACG=∠AFE,

∵∠AEF=∠AFE,

∴∠G=∠ACG,

∴AG=AC,

∵BM=CM.EM∥CG,

∴BE=EG,

∴BE= BG= (BA+AG)= (AB+AC).


【解析】(1)欲證明AE=AF,只要證明∠AEF=∠AFE即可.(2)作CG∥EM,交BA的延長線于G,先證明AC=AG,再證明BE=EG即可解決問題.本題考查三角形中位線定理、角平分線的性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關鍵是添加輔助線,構(gòu)造等腰三角形,以及三角形中位線,屬于中考常考題型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線.
(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的不等式組 ,其解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1∥l2∥l3 , 一等腰直角三角形ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則 的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是淄博市2016年4月份的天氣情況統(tǒng)計表:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

多云

多云

多云

多云

多云

多云

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

多云

多云

多云

多云

多云

多云

多云

多云

多云


(1)請完成下面的匯總表:

天氣

多云

天數(shù)


(2)根據(jù)匯總表繪制條形圖;
(3)在該月中任取一天,計算該天多云的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD,AB=6cm,BC=4 cm,ECD中點.點PA點出發(fā),沿ABC的方向在矩形邊上勻速運動,速度為1 cm /s,運動到C點停止.設點P運動的時間為t s.(圖2為備用圖)

(1)當PAB上,t為何值時,△APE的面積是矩形ABCD面積的?

(2)在整個運動過程中,t為何值時,△APE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于 AC的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD,則∠BAD的度數(shù)為( 。

A.65°
B.60°
C.55°
D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使ABC≌△DEF,還需要添加一個條件是( 。

A. BCA=F B. BCEF C. A=EDF D. AD=CF

查看答案和解析>>

同步練習冊答案