【題目】在中,,點(diǎn)在邊上運(yùn)動(dòng),連接,以為一邊且在的右側(cè)作正方形.
(1)如果,如圖①,試判斷線段與之間的位置關(guān)系,并證明你的結(jié)論;
(2)如果,如圖②,(1)中結(jié)論是否成立,說(shuō)明理由.
(3)如果,如圖③,且正方形的邊與線段交于點(diǎn),設(shè),,,請(qǐng)直接寫(xiě)出線段的長(zhǎng).(用含的式子表示)
【答案】(1);證明見(jiàn)解析; (2)成立;理由見(jiàn)解析;(3).
【解析】
(1)先證明,得到,再根據(jù)角度轉(zhuǎn)換得到∠BCF=90°即可;
(2)過(guò)點(diǎn)作交于點(diǎn),可得,再證明,得,即可證明;
(3)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),可求出,則,根據(jù)得出相似比,即可表示出CP.
(1);
證明:∵,,
∴,
由正方形得,
∵,
∴,
在與中,
,
∴,
∴,
∴,
即;
(2)時(shí),的結(jié)論成立;
證明:如圖2,過(guò)點(diǎn)作交于點(diǎn),
∵,
∴,
∴,
在和中,
,
∴,
∴,,
即;
(3)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),
∵,
∴△AQC為等腰直角三角形,
∵,
∴,
∵DC=x,
∴,
∵四邊形ADEF為正方形,
∴∠ADE=90°,
∴∠PDC+∠ADQ=90°,
∵∠ADQ+∠QAD=90°,
∴∠PDC=∠QAD,
∴,
∴,
∴,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉辦運(yùn)動(dòng)會(huì),在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過(guò)程(最快的選手跑完了全程),其中x表示最快的選手的跑步時(shí)間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說(shuō)法,正確的有( 。
①最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有15米未跑;
②跑的最快的選手用時(shí)4'46″;
③出發(fā)后最快的選手與最慢的選手相遇了兩次;
④出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)長(zhǎng).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司向市場(chǎng)投放一款研發(fā)成本為10千萬(wàn)元新產(chǎn)品,經(jīng)調(diào)研發(fā)現(xiàn),其銷(xiāo)售總利潤(rùn)y(千萬(wàn)元)與銷(xiāo)售時(shí)間x(月)成二次函數(shù),其函數(shù)關(guān)系式為y=﹣x2+20x(x為整數(shù)).求:
(1)投入市場(chǎng)幾個(gè)月后累計(jì)銷(xiāo)售利潤(rùn)y開(kāi)始下降;
(2)累計(jì)利潤(rùn)達(dá)到8.1億時(shí),最快要幾個(gè)月(利潤(rùn)=銷(xiāo)售總利潤(rùn)﹣研發(fā)成本);
(3)當(dāng)月銷(xiāo)售利潤(rùn)小于等于3千萬(wàn)時(shí)應(yīng)考慮推出替代產(chǎn)品,問(wèn)該公司何時(shí)推出替代產(chǎn)品最好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線過(guò)點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)過(guò)點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;
(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問(wèn):是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤(rùn)率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過(guò)100袋,會(huì)計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,為反比例函數(shù)圖象上的兩點(diǎn),動(dòng)點(diǎn)在軸正半軸上運(yùn)動(dòng),當(dāng)線段與線段之差達(dá)到最大時(shí),點(diǎn)的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店準(zhǔn)備購(gòu)進(jìn)兩種商品,種商品每件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多元,用元購(gòu)進(jìn)種商品和用元購(gòu)進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為元,種商品每件的售價(jià)定為元.
(1)種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?
(2)商店計(jì)劃用不超過(guò)元的資金購(gòu)進(jìn)兩種商品共件,其中種商品的數(shù)量不低于種商品數(shù)上的一半,該商店有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當(dāng)∠B= 度時(shí),以O,D,E,C為頂點(diǎn)的四邊形是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com