【題目】不等式6﹣4x≥3x﹣8的非負(fù)整數(shù)解為(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】B
【解析】解:移項(xiàng)得,﹣4x﹣3x≥﹣8﹣6, 合并同類項(xiàng)得,﹣7x≥﹣14,
系數(shù)化為1得,x≤2.
故其非負(fù)整數(shù)解為:0,1,2,共3個(gè).
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一元一次不等式的整數(shù)解的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握大大取較大,小小取較;小大,大小取中間;大小,小大無(wú)處找.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車租賃公司擁有20輛汽車。據(jù)統(tǒng)計(jì),當(dāng)每輛車的日租金為400元時(shí),可全部租出;當(dāng)輛車的日租金每增加50元時(shí),未租出的車將增加1輛;公司平均每日的各項(xiàng)支出共4800元。設(shè)公司每日租出輛車,日收益為元,(日收益=日租金收入-平均每日各項(xiàng)支出)。

(1)公司每日租出輛車時(shí),每輛車的日租金為 元(用含的代數(shù)式表示);

(2)當(dāng)每日租出多少輛時(shí),租賃公司日收益最大?最大是多少元?

(3)當(dāng)每日租出多少輛時(shí),租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某市民健身廣場(chǎng)的平面示意圖,它是由6個(gè)正方形組成的長(zhǎng)方形,其中CD兩個(gè)正當(dāng)形的大小相同.已知中間最小的正方形A的邊長(zhǎng)為1m.

1若設(shè)圖中最大正方形B的邊長(zhǎng)是x m,用含x的式子表示出正方形F,EC的邊長(zhǎng)分別為______________,_________.

2觀察圖形的特點(diǎn)可知,長(zhǎng)方形相對(duì)的兩邊是相等的(如圖中PQ=MN,QM=PN),請(qǐng)根據(jù)這個(gè)等量關(guān)系,求出x的值;

3現(xiàn)沿著長(zhǎng)方形廣場(chǎng)的四條邊鋪設(shè)下水管道,由甲、乙兩個(gè)工程對(duì)單獨(dú)建設(shè)分別需要10天、15天完成。如果兩隊(duì)從一點(diǎn)開(kāi)始,沿相反的方向同時(shí)施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問(wèn)還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市準(zhǔn)備在相距2千米的M,N兩工廠間修一條筆直的公路,但在M地北偏東45°方向、N地北偏西60°方向的P處,有一個(gè)半徑為0.6千米的住宅小區(qū)(如圖),問(wèn)修筑公路時(shí),這個(gè)小區(qū)是否有居民需要搬遷?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F.若BF=12,AB=10,則AE的長(zhǎng)為(
A.10
B.12
C.16
D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中是直角三角形,OB與軸正半軸重合, ,且OB=1, ,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的倍,使,得到,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的m倍,使,得到……,如此繼續(xù)下去,得到,則m的值和點(diǎn)的坐標(biāo)是 ( )

A. 2, B. 2,

C. , D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A、C至直線l的距離分別為2和3,則此正方形的面積為(
A.5
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求值

(1)先化簡(jiǎn)再求值:5x2-(x-2)(3x+1)-2(x+1)(x-5),其中x=-1

(2)已知a+b=4,ab=2,求a3b+2a2b2+ab3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:?jiǎn)栴}:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖甲,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.要求:畫出分割線并在正方形網(wǎng)格圖(圖中的每一個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得x= 由此可知新正方形的邊長(zhǎng)等于兩個(gè)小正方形組成的矩形對(duì)角線的長(zhǎng).于是,畫出如圖乙所示的分割線,拼出如圖丙所示的新的正方形.
請(qǐng)你參考小東同學(xué)的做法,解決如下問(wèn)題:
現(xiàn)有10個(gè)邊長(zhǎng)為1的小正方形,排列形式如圖丁,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.要求:在圖丁中畫出分割線,并在圖戊的正方形網(wǎng)格圖(圖中的每一個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.
說(shuō)明:直接畫出圖形,不要求寫分析過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案