【題目】如圖,一長度為10的線段AC的兩個端點A、C分別在y軸和x軸的正半軸上滑動,以A為直角頂點,AC為直角邊在第一象限內(nèi)作等腰直角△ABC,連接BO.
(1)求OB的最大值;
(2)在AC滑動過程中,△OBC能否恰好為等腰三角形?若能,求出此時點A的坐標(biāo);若不能,請說明理由.

【答案】
(1)解:取AC的中點D,連接OD、BD.

在Rt△ABC中,∵AC=AB=10,

∴OD= AC=5,AD=DB=5,BD= =5 ,

∵OB≤OD+BD,

∴OB的最大值為5+5


(2)解:作BE⊥y軸于E.

∵∠BEA=∠AOC=90°,∠BAC=90°,

∴∠EBA=∠OAC,

∵AB=AC,

∴△ABE≌△CAO,

∴BE=OA,

∴AE=OC.

①∵EA<AB<OB,EA=OC,

∴OC<OB,即OC≠OB.

②∵OC<OA<BC,即OC≠BC.

③當(dāng)OB=BC時,作BF⊥x軸于F,則OF=FC=BE,

設(shè)OA=a,則BE=a,OC=2a,

由OA2+OC2=AC2,a2+4a2=102,解得a=2 ,

∴A(0,2 ),

綜上所述,當(dāng)A(0,2 )時,△OBC是等腰三角形.


【解析】(1)取AC的中點D,連接OD、BD.構(gòu)建三邊關(guān)系OB≤OD+BD,求出OD、OB即可解決問題;(2)作BE⊥y軸于E.分三種情形分類討論①由EA<AB<OB,EA=OC,推出OC<OB,即OC≠OB.②由OC<OA<BC,即OC≠BC.③當(dāng)OB=BC時,作BF⊥x軸于F,則OF=FC=BE,設(shè)OA=a,則BE=a,OC=2a,由OA2+OC2=AC2 , 構(gòu)建方程即可;
【考點精析】本題主要考查了等腰直角三角形和等腰三角形的判定的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線y1拋物線的一部分,且表達(dá)式為:y1=(x2﹣2x﹣3)(x≤3)曲線y2與曲線y1關(guān)于直線x=3對稱.

(1)求A、B、C三點的坐標(biāo)和曲線y2的表達(dá)式;
(2)過點D作CD∥x軸交曲線y1于點D,連接AD,在曲線y2上有一點M,使得四邊形ACDM為箏形(如果一個四邊形的一條對角線被另一條對角線垂直平分,這樣的四邊形為箏形),請求出點M的橫坐標(biāo);
(3)設(shè)直線CM與x軸交于點N,試問在線段MN下方的曲線y2上是否存在一點P,使△PMN的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,頂點為( ,﹣ )的拋物線y=ax2+bx+c過點M(2,0).

(1)求拋物線的解析式;
(2)點A是拋物線與x軸的交點(不與點M重合),點B是拋物線與y軸的交點,點C是直線y=x+1上一點(處于x軸下方),點D是反比例函數(shù)y= (k>0)圖象上一點,若以點A,B,C,D為頂點的四邊形是菱形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC的中點,AE∥BC,DE∥AB.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN= EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江蘇衛(wèi)視《最強(qiáng)大腦》曾播出一期“辨臉識人”節(jié)目,參賽選手以家庭為單位,每組家庭由爸爸媽媽和寶寶3人組成,爸爸、媽媽和寶寶分散在三塊區(qū)域,選手需在寶寶中選一個寶寶,然后分別在爸爸區(qū)域和媽媽區(qū)域中正確找出這個寶寶的父母,不考慮其他因素,僅從數(shù)學(xué)角度思考,已知在本期比賽中有A、B、C三組家庭進(jìn)行比賽.
(1)若機(jī)器人智能小度選擇A組家庭的寶寶,求小度在媽媽區(qū)域中正確找出其媽媽的概率;
(2)如果任選一個寶寶(假如選A組家庭),通過列表或樹狀圖的方法,求機(jī)器人智能小度至少正確找對寶寶父母其中一人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置一個邊長為1的正方形ABCD,將其沿x軸的正方向無滑動地在x軸上滾動,當(dāng)點A離開原點后第一次落在x軸上時,點A運(yùn)動的路徑與x軸圍成的面積為( )

A.
+
B.
+1
C.π+
D.π+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具專柜要經(jīng)營一種新上市的兒童玩具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出專柜銷售這種玩具,每天所得的銷售利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該玩具每天的銷售利潤最大;
(3)專柜結(jié)合上述情況,設(shè)計了A、B兩種營銷方案: 方案A:該玩具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件玩具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案