【題目】如圖①,在平面直角坐標(biāo)系中,直徑為 的⊙A經(jīng)過坐標(biāo)系原點(diǎn)O(0,0),與x軸交于點(diǎn)B,與y軸交于點(diǎn)C(0, ).

(1)求點(diǎn)B的坐標(biāo);
(2)如圖②,過點(diǎn)B作⊙A的切線交直線OA于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(3)過點(diǎn)P作⊙A的另一條切線PE,請直接寫出切點(diǎn)E的坐標(biāo).

【答案】
(1)解:如圖①,連接

,

是⊙ 的直徑.

,


(2)解:如圖②,過點(diǎn) 軸于點(diǎn)

為⊙ 的切線,

在Rt 中, , ,

在Rt 中, , ,

,


(3)解:
【解析】(1)利用90度圓周角所對的弦是直徑,可求出OB即能得出B坐標(biāo);(2)先通過P作x軸的垂線構(gòu)造出橫縱坐標(biāo)對應(yīng)的線段,利用切線的性質(zhì)定理和銳角三角函數(shù),求出坐標(biāo);(3)如圖,利用切線的性質(zhì)定理和切線長定理得出∠ EPA=30度,PE于x軸平行,連接AE ,求出EF、OF即可求出坐標(biāo).

【考點(diǎn)精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點(diǎn),需要掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是直角三角形,∠C=90°,∠CAB的角平分線AE與 AB的垂直平分線DE相交于點(diǎn)E.

(1)如圖2,若點(diǎn)E正好落在邊BC上.

①求∠B的度數(shù)

②證明:BC=3DE

(2)如圖3,若點(diǎn)E滿足C、E、D共線.

求證:AD+DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,CD為兩村莊,DA=10kmCB=15km,DAABACBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠(yuǎn)處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,正比例函數(shù) 與反比例函數(shù) 的圖象交于A,B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為2,AC⊥x軸于點(diǎn)C,連接BC.

(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是反比例函數(shù) 圖象上的一點(diǎn),且滿足△OPC的面積是△ABC面積的一半,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°.將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)得到△A’B’C,旋轉(zhuǎn)角為 ,且0°< <180°.在旋轉(zhuǎn)過程中,點(diǎn)B’可以恰好落在AB的中點(diǎn)處,如圖②.

(1)求∠A的度數(shù);
(2)當(dāng)點(diǎn)C到AA’的距離等于AC的一半時,求 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,老師提出了一個問題,希望同學(xué)們進(jìn)行探究.
在平面直角坐標(biāo)系中,若一次函數(shù) 的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù) 的圖象交于C、D兩點(diǎn),則AD和BC有怎樣的數(shù)量關(guān)系?
同學(xué)們通過合作討論,逐漸完成了對問題的探究.

(1)小勇說:我們可以從特殊入手,取 進(jìn)行研究(如圖①),此時我發(fā)現(xiàn)AD=BC.
小攀說:在圖①中,分別從點(diǎn)C、D兩點(diǎn)向兩條坐標(biāo)軸作垂線,根據(jù)所學(xué)知識可以知道有兩個圖形的面積是相等的,并能求出確定的值,而且在圖②中,此時 ,這一結(jié)論仍然成立,即 的面積= 的面積,此面積的值為
小高說:我還發(fā)現(xiàn),在圖①或圖②中連接某兩個已知點(diǎn),得到的線段與AD和BC都相等,這條線段是
請完成以上填空;
(2)請結(jié)合以上三位同學(xué)的討論,對圖②所示的情況下,證明AD=BC;
小峰突然提出一個問題:通過剛才的證明,我們可以知道當(dāng)直線與雙曲線的兩個交點(diǎn)都在第一象限時, 總是成立的,但我發(fā)現(xiàn)當(dāng)k的取值不同時,這兩個交點(diǎn)有可能在不同象限,結(jié)論還成立嗎?
(3)請你結(jié)合小峰提出的問題,在圖③中畫出示意圖,并判斷結(jié)論是否成立.若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).

(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若BAC=45°,BE的延長線與AC垂直相交于點(diǎn)F時,問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列因式分解的過程:

①x2-xy+4x-4y=(x2-xy)+(4x-4y)=x(x-y)+4(x-y)=(x-y)(x+4).

②a2-b2-c2+2bc=a2-(b2+c2-2bc)=a2-(b-c)2=(a+b-c)(a-b+c).

題分組后能直接提公因式,第題分組后能直接運(yùn)用公式,仿照上述分解因式的方法,把下列各式分解因式:

(1)ad-ac-bc+bd;

(2)x2-6x+9-y2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年春季,蔬菜種植場在15公頃的大棚地里分別種植了茄子和西紅柿,總費(fèi)用是萬元其中,種植茄子和西紅柿每公頃的費(fèi)用和每公頃獲利情況如表:

每公頃費(fèi)用萬元

每公頃獲利萬元

茄子

西紅柿

請解答下列問題:

求出茄子和西紅柿的種植面積各為多少公頃?

種植場在這一季共獲利多少萬元?

查看答案和解析>>

同步練習(xí)冊答案