【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)k>0)的圖像交于點A與點Ba-4).

1)求反比例函數(shù)的表達式;

2)若點Pm,6)是雙曲線上的一點,連接OP,過點Py軸的平行線交直線AB于點C,連接OC,求△POC的面積.

【答案】1;(2

【解析】

1)先求出點B的坐標,然后利用待定系數(shù)法將B代入反比例函數(shù)解析式中即可求出其表達式;
2)先求出m,然后根據(jù)一次函數(shù)解析式求得P點的坐標,然后根據(jù)三角形面積公式即可求得.

解:(1)將Ba,-4)代入一次函數(shù)中,

解得

B-3,-4
B-3-4)代入反比例函數(shù)中,,

解得,
∴反比例函數(shù)的表達式為;
2)如圖,

Pm,6)代入,得

P2,6),

PC平行于y軸,

C點的橫坐標為2,

x=2代入,解得,

PC=

由題可知,OPC的距離為2,

∴△POC的面積為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1.直線AD∥EF,點B,C分別在EFAD上,∠A=∠ABC,BD平分∠CBF

1)求證:AB⊥BD;

2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;

3)在(2)的條件下,如圖3CH平分∠ACBBG于點H,設∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,坐標原點O是菱形ABOC的一個頂點,邊OB落在x軸的負半軸上,且cosBOC=,頂點C的坐標為(a,4),反比例函數(shù)的圖象與菱形對角線AO交于D點,連接BD,當BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結(jié)果,繪制成如下的圖表,根據(jù)相關(guān)信息完成下列問題:

1)統(tǒng)計表中的, ;

2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是

3)已知該校共有900名學生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,點P、Q分別從A、B兩點出發(fā),按逆時針方向沿矩形的邊運動,點P的速度是每秒2個單位長度,點Q的速度是每秒1個單位長度,運動的時間為t秒,當其中某一點到達點A時,運動停止,運動過程中,點P關(guān)于直線AQ的對稱點記為點M

(1)點P點在線段AB上運動,點Q在線段BC上運動時,請用含t的式子表示出APQ的面積S;

(2)當點P在線段BC上運動,且ABP∽△PCQ時,求t的值;

(3)若點Q在線段CD上,且以A、P、Q、M為頂點的四邊形是菱形,求t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB=2,點P是線段AB上一點,分別以AP、BP為邊作兩個正方形.

1)如果APx,求兩個正方形的面積之和S

2)當點PAB的中點時,求兩個正方形的面積之和S1;

3)當點P不是AB的中點時,比較(1)中的S與(2)中S1的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為平行四邊形的對角線,,,、相交于,直線交線段的延長線于,下面結(jié)論:①;②;③;④其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設每件商品降價x元.據(jù)此規(guī)律,請回答:

1)商場日銷售量增加______件,每件商品盈利______.元(用含的代數(shù)式表示);

2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到1428元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,事實上,小明的表示方法是有道理的,因為<<,所以的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.請據(jù)此解答:

1的整數(shù)部分是 ,小數(shù)部分是

2)如果的小數(shù)部分為a的整數(shù)部分為b,求a+b-的值;

3)若設2+的整數(shù)部分為x,小數(shù)部分為y,求(y-x2的值.

查看答案和解析>>

同步練習冊答案