【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處。
(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結果用根號表示):
(2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結果精確到0.1小時)。(參考數(shù)據(jù):)
【答案】(1)、90海里;(2)、7.4小時.
【解析】
試題分析:(1)、過點M作MD⊥AB于點D,根據(jù)AM=180海里以及△AMD的三角函數(shù)求出MD的長度;(2)、根據(jù)三角函數(shù)求出MB的長度,然后計算.
試題解析:(1)、過點M作MD⊥AB于點D, ∵∠AME=45°, ∴∠AMD=∠MAD=45°, ∵AM=180海里, ∴MD=AMcos45°=90(海里), 答:漁船從A到B的航行過程中與小島M之間的最小距離是90海里;
(2)、在Rt△DMB中, ∵∠BMF=60°,∴∠DMB=30°, ∵MD=90海里, ∴MB=60海里,
∴60÷20≈7.4(小時),
答:漁船從B到達小島M的航行時間約為7.4小時.
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,點E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結論:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正確結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位同學做一道題,已知兩個多項式A,B,計算A+B,他誤將A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否幫助他求得正確答案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com