【題目】近年來(lái),共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國(guó)慶后,許多高校均投放了使用手機(jī)支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計(jì)表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是 ,該中位數(shù)的意義是 ;
(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請(qǐng)你估計(jì)這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?
【答案】(1)3、3、表示這部分出行學(xué)生這天約有一半使用共享單車的次數(shù)在3次以上(或3次);(2)這天部分出行學(xué)生平均每人使用共享單車約2次;(3)估計(jì)這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有765人.
【解析】
(1)根據(jù)中位數(shù)和眾數(shù)的定義進(jìn)行求解即可得;
(2)根據(jù)加權(quán)平均數(shù)的公式列式計(jì)算即可;
(3)用總?cè)藬?shù)乘以樣本中使用共享單車次數(shù)在3次以上(含3次)的學(xué)生所占比例即可得.
(1)∵總?cè)藬?shù)為11+15+23+28+18+5=100,
∴中位數(shù)為第50、51個(gè)數(shù)據(jù)的平均數(shù),即中位數(shù)為=3次,眾數(shù)為3次,
其中中位數(shù)表示這部分出行學(xué)生這天約有一半使用共享單車的次數(shù)在3次以上(或3次),
故答案為:3、3、表示這部分出行學(xué)生這天約有一半使用共享單車的次數(shù)在3次以上(或3次);
(2)≈2(次),
答:這天部分出行學(xué)生平均每人使用共享單車約2次;
(3)1500×=765(人),
答:估計(jì)這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有765人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C是 的中點(diǎn),∠COB=60°,過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說(shuō)明理由;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上的一點(diǎn),點(diǎn)D是 的中點(diǎn),過(guò)D作⊙O的切線交AC于E,DE=3,CE=1.
(1)求證:DE⊥AC;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠A=135°,點(diǎn)P是菱形內(nèi)部一點(diǎn),且滿足S△PCD=,則PC+PD的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)①若有意義,則化簡(jiǎn)= .
②化簡(jiǎn):a2= .
(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知△ABC.
(1)請(qǐng)用尺規(guī)作圖法作出BC的垂直平分線DE,垂足為D,交AC于點(diǎn)E, (保留作圖痕跡,不寫作法);
(2)請(qǐng)用尺規(guī)作圖法作出∠C的角平分線CF,交AB于點(diǎn)F,(保留作圖痕跡,不寫作法);
(3)請(qǐng)用尺規(guī)作圖法在BC上找出一點(diǎn)P,使△PEF的周長(zhǎng)最小.(保留作圖痕跡,不寫作法).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com