【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

【答案】
(1)解:160÷40%=400,

答:本次抽樣測試的學(xué)生人數(shù)是400人


(2)解: ×360°=108°,

答:扇形圖中∠α的度數(shù)是108°;

C等級人數(shù)為:400﹣120﹣160﹣40=80(人),補全條形圖如圖:


(3)解: ×9000=900(人),

答:測試等級為D的約有900人


【解析】(1)根據(jù)B級的頻數(shù)和百分比求出學(xué)生人數(shù);(2)求出A級的百分比,360°乘百分比即為∠α的度數(shù),根據(jù)各組人數(shù)之和等于總數(shù)求得C級人數(shù)即可補全圖形;(3)根據(jù)樣本估計總體思想,用D等級所占比例乘以總?cè)藬?shù)即可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關(guān)于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計算正確的是( )

A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3

C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下面各題
(1)化簡:a(a﹣2b)+(a+b)2
(2)解不等式組 ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,動點P從點A開始沿A→B→C→D 的路徑勻速前進到D為止.在這個過程中,APD的面積S隨時間t的變化關(guān)系用圖象表示正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種商品的標(biāo)準(zhǔn)價格是200元,但隨著季節(jié)的變化,商品的價格可浮動,想一想.

的含義是什么?

請你計算出該商品的最高價格和最低價格;

如果以標(biāo)準(zhǔn)價為標(biāo)準(zhǔn),超過標(biāo)準(zhǔn)價記“”,低于標(biāo)準(zhǔn)價記“”,該商品價格的浮動范圍又可以怎樣表示?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 , 點D的坐標(biāo)為(用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A表示數(shù)x,B表示-2,C表示數(shù)2x+8.

(1)若將數(shù)軸沿點B對折A與點C恰好重合,則點A和點C分別表示什么數(shù)?

(2)BC=4AB,則點A和點C分別表示什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,C為⊙O上一點,點D是 的中點,DE⊥AC于E,DF⊥AB于F.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OF=4,求AC的長度.

查看答案和解析>>

同步練習(xí)冊答案