【題目】如圖,在⊙O中,半徑OAOB,過OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).則圖中陰影部分的面積為______________

【答案】

【解析】分析:(1)首先證明OADF,由垂徑定理求出CD=,由OD=2CO推出∠CDO=30°,設(shè)OC=x,則OD=2x,利用勾股定理求得OD的長,再根據(jù)S=SCDO+S扇形OBD-S扇形OCE計(jì)算即可.

詳解:連接OD,

OAOB,

∴∠AOB=90°

CDOB,

∴∠OCD=90°,

OADF,

CD=DF=

RtOCD中,∵CAO中點(diǎn),

OA=OD=2CO,

設(shè)OC=x

x2+()2=(2x)2,

解得:x=1,

OA=OD=2

OC=OD,OCD=90°,

∴∠CDO=30°,

FDOB,

∴∠DOB=ODC=30°,

S=SCDO+S扇形OBDS扇形OCE=×1×+=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)數(shù)軸上有AB,C三點(diǎn),它們所表示的數(shù)分別為2,﹣3,x

1)若點(diǎn)C是線段AB的中點(diǎn),請(qǐng)直接寫出x的值;

2)若OCOBOA,求出x的值;

3)若2AC+OB7,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,點(diǎn)D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點(diǎn)AB,與y軸交于點(diǎn)C,且A﹣1,0)、B40).

1)求此二次函數(shù)的表達(dá)式;

2)如圖1,拋物線的對(duì)稱軸mx軸交于點(diǎn)E,CDm,垂足為D,點(diǎn)F0),動(dòng)點(diǎn)N在線段DE上運(yùn)動(dòng),連接CF、CN、FN,若以點(diǎn)CD、N為頂點(diǎn)的三角形與FEN相似,求點(diǎn)N的坐標(biāo);

3)如圖2,點(diǎn)M在拋物線上,且點(diǎn)M的橫坐標(biāo)是1,將射線MA繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)45°,交拋物線于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為直徑,AB=4,C、D為圓上兩個(gè)動(dòng)點(diǎn),NCD中點(diǎn),CMABM,當(dāng)CD在圓上運(yùn)動(dòng)時(shí)保持∠CMN=30°,則CD的長( 

A. C、D的運(yùn)動(dòng)位置而變化,且最大值為4 B. C、D的運(yùn)動(dòng)位置而變化,且最小值為2

C. C、D的運(yùn)動(dòng)位置長度保持不變,等于2 D. C、D的運(yùn)動(dòng)位置而變化,沒有最值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年國慶后,許多高校均投放了使用手機(jī)就可隨時(shí)用的共享單車。某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi)。具體收費(fèi)標(biāo)準(zhǔn)如下:

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

1)寫出ab的值。

2)已知該校有5100名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元。試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和直線 不同時(shí)為0),則點(diǎn)到直線的距離可用公式 計(jì)算.

例如.求點(diǎn) 到直線的距離.

解:由直線可知

根據(jù)以上材料,解答下列問題:

(1) 求點(diǎn) 到直線的距離;

(2) 求點(diǎn) 到直線的距離,并說明點(diǎn)與直線的位置關(guān)系;

(3)已知直線 與直線平行,求兩條平行線間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)求線段MN的長度;

(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;

(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng):第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長度到達(dá)點(diǎn)A1,第二次將點(diǎn)A向右移動(dòng)6個(gè)單位長度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長度到達(dá)點(diǎn)A3,按照這種移動(dòng)規(guī)律移動(dòng)下去,第n次移動(dòng)到點(diǎn)An,如果點(diǎn)An與原點(diǎn)的距離不小于20,那么n的最小值是( 。

A. 12B. 13C. 14D. 15

查看答案和解析>>

同步練習(xí)冊(cè)答案