【題目】很多交通事故是由于超速行駛導致的,為集中治理超速現(xiàn)象,高速交警在距離高速路40米的地方設置了一個測速觀察點,現(xiàn)測得測速點的西北方向有一輛小型轎車從B處沿西向正東方向行駛,2秒鐘后到達測速點北偏東的方向上的C處,如圖.

1)求該小型轎車在測速過程中的平均行駛速度約是多少千米/時(精確到1千米/時)?

(參考數(shù)據(jù):

2)我國交通法規(guī)定:小轎車在高速路行駛,時速超過限定速度10%以上不到50%的處200元罰款,扣3分;時速超過限定速度50%以上不到70%的處1500元罰款,扣12分;時速超過限定時速70%以上的處1500元罰款,扣12分.若該高速路段限速120千米/時,你認為該小轎車駕駛員會受到怎樣的處罰.

【答案】1197千米/時;(2)小轎車的駕駛員會受到1500元罰款,扣12分的處罰.

【解析】

1)過點AADBC于點D,則AD=40m,通過解直角三角形,求出BD,CD的長,從而求出BC的長,進而即可求出速度;

2)求出小轎車的超速范圍,即可得到結論.

1)過點AADBC于點D,則AD=40m,

∵∠BAD=45°,

∴∠ABD=45°,

BD=AD=40m,

∵∠DAC=60°,

CD=AD×tan60°=40m,

BC=40+40109.28m

∴小轎車的速度=(千米/小時),

答:該小型轎車在測速過程中的平均行駛速度約是197千米/時;

2)(197-120÷120≈0.64=64%,

50%<64%<70%,

∴小轎車的駕駛員會受到1500元罰款,扣12分的處罰.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把ABC沿直線BC翻折,點A的對應點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點D的坐標;

(2)求拋物線的對稱軸和函數(shù)表達式;

(3)在拋物線上是否存在點P,使得PBD與PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中有一個正六邊形EFGHIJ,其頂點均在矩形的邊上,邊EJ和邊GH分別在矩形的邊ADBC上,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A1B1C1,A2B2C2A3B3C3,AnBnCn均為等腰直角三角形,且C1C2C3Cn90°,點A1,A2,A3,,An和點B1,B2B3,,Bn分別在正比例函數(shù)yxy=﹣x的圖象上,且點A1A2,A3,,An的橫坐標分別為12,3…n,線段A1B1,A2B2,A3B3,,AnBn均與y軸平行.按照圖中所反映的規(guī)律,則AnBnCn的頂點Cn的坐標是____.(其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y軸于點B0,3),交x軸于A,C兩點,C點坐標(4,0),點PBC上方拋物線上一動點(P不與B,C重合)

1)求拋物線的解析式;

2)若點P到直線BC距離是,求點P的坐標;

3)連接AP交線段BC于點H,點My軸負半軸上一點,且CH=BM,當AH+CM的值最小時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形內(nèi)一點,將線段繞點順時針旋轉得到線段,連接.若,,,則四邊形的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是矩形,AD∥x軸,A,),AB=1,AD=2

1)直接寫出B、C、D三點的坐標;

2)將矩形ABCD向右平移m個單位,使點A、C恰好同時落在反比例函數(shù))的圖象上,得矩形A′B′C′D′.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1中,,,上一動點,且,的延長線交于點,連接

1)①求證:;

②若,當時,求的長;

2)如圖2,當時,求證:平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師從學校出發(fā),到距學校的某商場去給學生買獎品,他先步行了后,換騎上了共享單車,到達商場時,全程總共剛好花了.已知王老師騎共享單車的平均速度是步行速度的3倍(轉換出行方式時,所需時間忽略不計).

1)求王老師步行和騎共享單車的平均速度分別為多少?

2)買完獎品后,王老師原路返回,為按時上班,路上所花時間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車的方式返回,問:他最多可步行多少米?

查看答案和解析>>

同步練習冊答案