【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)B,PD交⊙O于點(diǎn)C,D,PE是⊙O的切線,E為切點(diǎn),連結(jié)AE,交CD于點(diǎn)F
(1)若⊙O的半徑為8,求CD的長(zhǎng);
(2)證明:PE=PF;
(3)若PF=13,sinA=,求EF的長(zhǎng).
【答案】(1)CD=8;(2)證明見解析;(3)EF=10.
【解析】
(1)首先連接OD,由直線PD垂直平分⊙O的半徑OA于點(diǎn)B,⊙O的半徑為8,可求得OB的長(zhǎng),又由勾股定理,可求得BD的長(zhǎng),然后由垂徑定理,求得CD的長(zhǎng).
(2)由PE是⊙O的切線,易證得∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,繼而可證得∠PEF=∠PFE,根據(jù)等角對(duì)等邊的性質(zhì),可得PE=PF.
(3)首先過(guò)點(diǎn)P作PG⊥EF于點(diǎn)G,易得∠FPG=∠A,即可得FG=PFsinA=13×=5,又由等腰三角形的性質(zhì),求得答案.
解:(1)連接OD,
∵直線PD垂直平分⊙O的半徑OA于點(diǎn)B,⊙O的半徑為8,
∴OB=OA=4,BC=BD=CD.
∴在Rt△OBD中,.
∴CD=2BD=8.
(2)證明:
∵PE是⊙O的切線,
∴∠PEO=90°.
∴∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A.
∵OE=OA,
∴∠A=∠AEO.
∴∠PEF=∠PFE.
∴PE=PF.
(3)過(guò)點(diǎn)P作PG⊥EF于點(diǎn)G,
∴∠PGF=∠ABF=90°.
∵∠PFG=∠AFB,
∴∠FPG=∠A.
∴FG=PFsinA=13×=5.
∵PE=PF,∴EF=2FG=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P是△ABC一邊上的一點(diǎn)(P不與A、B、C重合),過(guò)點(diǎn)P的一條直線截△ABC,如果截得的三角形與△ABC相似,我們稱這條直線為過(guò)點(diǎn)P的△ABC的“相似線”.Rt△ABC中,∠C=90°,∠A=30°,當(dāng)點(diǎn)P為AC的中點(diǎn)時(shí),過(guò)點(diǎn)P的△ABC的“相似線”最多有幾條?( )
A. 1條B. 2條C. 3條D. 4條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)準(zhǔn)備圍建一個(gè)矩形苗圃,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,若墻長(zhǎng)為米,設(shè)這個(gè)苗圃垂直于墻的一邊長(zhǎng)為米.
若苗圃園的面積為平方米,求的值;
若平行于墻的一邊長(zhǎng)不小于米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值,如果沒有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O1經(jīng)過(guò)A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線l,直線l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫出直線l,則直線l與⊙O1的交點(diǎn)坐標(biāo)為 ;
(2)若⊙O1上存在點(diǎn)P,使得△APD為等腰三角形,則這樣的點(diǎn)P有 個(gè),試寫出其中一個(gè)點(diǎn)P坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(3,4),點(diǎn)B為直線x=﹣2上的動(dòng)點(diǎn),點(diǎn)C(x,0)且﹣2<x<3,BC⊥AC垂足為點(diǎn)C,連接AB.若AB與y軸正半軸的所夾銳角為α,當(dāng)tanα的值最大時(shí)x的值為( 。
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)F作FE⊥x軸,FG⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),籃球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮正在參加學(xué)校舉辦的古詩(shī)詞比賽節(jié)目,他須答對(duì)兩道單選題才能順利通過(guò)最后一關(guān),其中第一題有A、B、C、D共4個(gè)選項(xiàng),第二題有A、B、C共3個(gè)選項(xiàng),而這兩題小亮都不會(huì),但小亮有一次使用“特權(quán)”的機(jī)會(huì)(使用“特權(quán)”可去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小亮第一題不使用“特權(quán)”,隨機(jī)選擇一個(gè)選項(xiàng),那么小亮答對(duì)第一題的概率是________.
(2)如果小亮將“特權(quán)”留在第二題,請(qǐng)用畫樹狀圖或列表法來(lái)求出小亮通過(guò)最后一關(guān)的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是任意兩個(gè)實(shí)數(shù),規(guī)定a與b之間的一種運(yùn)算“⊕”為:a⊕b=,
例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,
(x2+1)⊕(x﹣1)=(因?yàn)閤2+1>0)
參照上面材料,解答下列問題:
(1)2⊕4= ,(﹣2)⊕4= ;
(2)若x>,且滿足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com