如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=20cm,MG=5cm,MC=4cm,則陰影部分的面積是
90cm2
90cm2
分析:根據(jù)平移的性質(zhì)可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,觀察可知梯形EFMD是兩個梯形的公共部分,那么陰影部分的面積就等于梯形MGHD,再根據(jù)梯形的面積計算公式計算即可.
解答:解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,
∴梯形EFGH≌梯形ABCD,
∴GH=CD,BC=FG,
∵梯形EFMD是兩個梯形的公共部分,
∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,
∴S陰影=S梯形MGHD=
1
2
(DM+GH)•GM=
1
2
(20-4+20)×5=90.
故答案是90cm2
點評:本題考查了圖形的平移,解題的關(guān)鍵是知道平移前后的兩個圖形全等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=3AD,CD=4AD,E、F為兩腰的中點,下面給出四個精英家教網(wǎng)結(jié)論:
①∠BCD=60°           ②∠CED=90°
③△ADE∽△EDC        ④
AE
AB
=
EF
BC

其中正確的有
 
(要求:把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,動點P從D點精英家教網(wǎng)出發(fā),沿DA方向以2cm/秒的速度運動,運動時間為t秒.
(1)當t為何值時,以PDCB為頂點的四邊形是平行四邊形;
(2)當t為何值時,以PCD為頂點的三角形是直角三角形;
(3)問:在點P的運動過程中,梯形內(nèi)是否存在這樣的點Q,使得過PQ的直線與BC相交且把梯形ABCD分成面積相等的兩部分?若存在,請你用一句話概括出Q點的位置;否則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒3個單位長的速度運動,動點Q從點D出發(fā),在線段DA上以每秒1個單位長的速度向點A運動,點P、Q分別從點B、D同時出發(fā),當點Q運動到點A時,點P隨之停止運動,設(shè)運動的時間為t秒.

(1)當t為何值時,P、Q兩點之間的距離是13?
(2)當t為何值時,以P、Q、C、D為頂點的四邊形為平行四邊形?
(3)是否存在某一時刻t,使直線PQ恰好把直角梯形ABCD的周長和面積同時等分?如存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇徐州城北中學七年級3月綜合練習(一)數(shù)學試卷(帶解析) 題型:填空題

如圖,把直角梯形ABCD沿射線AB的方向平移到直角梯形EFGH的位置.已知BC=12,CD=10,CI=2, HI=7.則圖中陰影部分的面積是     

查看答案和解析>>

科目:初中數(shù)學 來源:2015屆江蘇徐州七年級3月綜合練習(一)數(shù)學試卷(解析版) 題型:填空題

如圖,把直角梯形ABCD沿射線AB的方向平移到直角梯形EFGH的位置.已知BC=12,CD=10,CI=2, HI=7.則圖中陰影部分的面積是     

 

查看答案和解析>>

同步練習冊答案