【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F,作CM⊥AD,垂足為M,下列結(jié)論不正確的是( 。

A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM

【答案】D

【解析】

由等邊三角形的性質(zhì)和已知條件證出AEC≌△BDA,即可得出A正確;

由全等三角形的性質(zhì)得出∠BAD=ACE,求出∠CFM=AFE=60°,得出∠FCM=30°,即可得出B正確;由等邊三角形的性質(zhì)和三角形的外角性質(zhì)得出C正確;D不正確.

A正確;理由如下:

∵△ABC是等邊三角形,

∴∠BAC=B=60°,AB=AC

又∵AE=BD

AECBDA中,

,

∴△AEC≌△BDA(SAS),

AD=CE;

B正確;理由如下:

∵△AEC≌△BDA,

∴∠BAD=ACE,

∴∠AFE=ACE+CAD=BAD+CAD=BAC=60°,

∴∠CFM=AFE=60°,

CMAD,

∴在RtCFM中,∠FCM=30°,

MF=CF;

C正確;理由如下:

∵∠BEC=BAD+AFE,AFE=60°,

∴∠BEC=BAD+AFE=BAD+60°,

∵∠CDA=BAD+CBA=BAD+60°,

∴∠BEC=CDA;

D不正確;理由如下:

要使AM=CM,則必須使∠DAC=45°,由已知條件知∠DAC的度數(shù)為大于小于60°均可,

AM=CM不成立;

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校開(kāi)展書(shū)香校園活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書(shū)的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書(shū)的次數(shù)統(tǒng)計(jì)表

借閱圖書(shū)的次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:

______,______.

該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.

請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3所對(duì)應(yīng)扇形的圓心角的度數(shù);

若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書(shū)“4次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC60° 求:

1)∠AOD的度數(shù);

2)∠AOB的度數(shù);

3)∠DOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABD、CBD關(guān)于直線BD對(duì)稱(chēng),點(diǎn)EBC上一點(diǎn),線段CE的垂直平分線交BD于點(diǎn)F,連接AFEF

1求證:AFEF;

2如圖2,連接AEBD于點(diǎn)G.若EFCD,求證:;

3如圖3,若∠BAD90°,且點(diǎn)EBF的垂直平分線上,tanABD,DF,請(qǐng)直接寫(xiě)出AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2cx2c2)(a0)交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C

1A(-1,0,則點(diǎn)B的坐標(biāo)為___________;

2A(-1,0),a1,點(diǎn)P為第一象限的拋物線,以P為圓心,為半徑的圓恰好與AC相切,求P點(diǎn)坐標(biāo);

3如圖,點(diǎn)R0ny軸負(fù)半軸上,直線RB交拋物線于另一點(diǎn)D,直線RA交拋物線于E.若DRDB,EFy軸于F,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,ADCD,BECDAD=3,DE=4,則BE= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)教育部門(mén)為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目”四個(gè)項(xiàng)目進(jìn)行評(píng)價(jià).檢測(cè)小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

(1)本次抽查的樣本容量是

(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;

(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能獨(dú)立思考的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作⊙O交斜邊AC于點(diǎn)D,過(guò)圓心OOEAC,交BC于點(diǎn)E,連接DE

(1)判斷DE與⊙O的位置關(guān)系并說(shuō)明理由;

(2)求證:2DE2=CDOE

(3)若tanC=,DE=,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案