精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,D為等腰直角三角形斜邊BC上的一點,△ABD繞點A旋轉后與△ACE重合,如果AD=1,那么DE=
 
分析:根據題意,△ABC是等腰直角三角形,△ABD≌△ACE,AD=1,故AD=AE=1,利用勾股定理可求出DE.
解答:解:因為△ABD與△ACE是互相旋轉可得的,
故△ABD≌△ACE.
因為AD=1,
故AD=AE=1,
又可證△ADE是等腰直角三角形,
所以DE=
AD2+AE2
=
2
點評:本題難度較簡單,主要考查的是旋轉的性質以及勾股定理的相關知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點在第一象限,A點坐標為(1,0).△OCD與△OAB關于y軸對稱.
(1)求經過D,O,B三點的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個單位至△O′A′B(如圖乙),則經過D,O,B′三點的拋物線的對稱軸在y軸的
 
.(填“左側”或“右側”)
(3)在(2)的條件下,設過D,O,B′三點的精英家教網拋物線的對稱軸為直線x=m.求當k為何值時,|m|=
13

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,直線y=2x+2與x軸,y軸分別交于A、B兩點,點C是在第一象限內此直線上的一個動點,以BC為直角邊作如圖所示的等腰直角三角形BCD,點E在過A、C、D三點的圓上,且DE⊥BD,連結CE、AD.
(1)找出圖中一對相似三角形(不再標記字母),并說明理由;
(2)在C的運動過程中,DE的長度是否改變?若不變,請求出DE的長;若變化,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

我們知道三角形三條中線的交點叫做三角形的重心.經過證明我們可得三角形重心具備下面的性質: 重心到頂點的距離與重心到該頂點對邊中點的距離之比為2﹕1.請你用此性質解決下面的問題.
已知:如圖,點為等腰直角三角形的重心,,直線過點,過 三點分別作直線的垂線,垂足分別為點.              
<1>當直線平行時(圖1),請你猜想線段三者之間的數量關系并證明;
<2>當直線繞點旋轉到與不平行時,分別探究在圖2、圖3這兩種情況下,上述結論是否還成立?若成立,請給予證明;若不成立,線段三者之間又有怎樣的數量關系?請寫出你的結論,不需證明.

查看答案和解析>>

科目:初中數學 來源:2011-2012年北京二龍路中學九年級第一學期期中測試數學卷 題型:解答題

我們知道三角形三條中線的交點叫做三角形的重心.經過證明我們可得三角形重心具備下面的性質: 重心到頂點的距離與重心到該頂點對邊中點的距離之比為2﹕1.請你用此性質解決下面的問題.
已知:如圖,點為等腰直角三角形的重心,,直線過點,過 三點分別作直線的垂線,垂足分別為點.              
<1>當直線平行時(圖1),請你猜想線段三者之間的數量關系并證明;
<2>當直線繞點旋轉到與不平行時,分別探究在圖2、圖3這兩種情況下,上述結論是否還成立?若成立,請給予證明;若不成立,線段三者之間又有怎樣的數量關系?請寫出你的結論,不需證明.

查看答案和解析>>

科目:初中數學 來源:2012年蘇教版初中數學八年級上5.1函數練習卷(解析版) 題型:選擇題

如圖,和的是等腰直角三形,,.點B與點D重合,點在同一條直線上,將沿方向平移,至點與點重合時停止.設點之間的距離為x,重疊部分的面積為,則準確反映之間對應關系的圖象是( )

 

查看答案和解析>>

同步練習冊答案