精英家教網 > 初中數學 > 題目詳情

【題目】為了了解一路段車輛行駛速度的情況,交警統(tǒng)計了該路段上午7::09:00來往車輛的車速(單位:千米/時),并繪制成如圖所示的條形統(tǒng)計圖.這些車速的眾數、中位數分別是(  )

A. 眾數是80千米時,中位數是60千米

B. 眾數是70千米時,中位數是70千米

C. 眾數是60千米時,中位數是60千米

D. 眾數是70千米時,中位數是60千米

【答案】D

【解析】

在這些車速中,70千米/時的車輛數最多,則眾數為70千米/時;處在正中間位置的車速是60千米/時,則中位數為60千米/時.依此即可求解.

70千米/時是出現(xiàn)次數最多的,故眾數是70千米/時,

這組數據從小到大的順序排列,處于正中間位置的數是60千米/時,故中位數是60千米/時.

故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】看圖填空:

(1)1和∠3是直線________被直線____所截得的______;

(2)1和∠4是直線_________被直線____所截得的______

(3)B和∠2是直線_________被直線_____所截得的______;

(4)B和∠4是直線_________被直線_____所截得的_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】寧波軌道交通4號線已開工建設,計劃2020年通車試運營.為了了解鎮(zhèn)民對4號線地鐵票的定價意向,某鎮(zhèn)某校數學興趣小組開展了“你認為寧波4號地鐵起步價定為多少合適”的問卷調查,并將調查結果整理后制成了如下統(tǒng)計圖,根據圖中所給出的信息解答下列問題:
(1)求本次調查中該興趣小組隨機調查的人數;
(2)請你把條形統(tǒng)計圖補充完整;
(3)如果在該鎮(zhèn)隨機咨詢一位居民,那么該居民支持“起步價為2元或3元”的概率是
(4)假設該鎮(zhèn)有3萬人,請估計該鎮(zhèn)支持“起步價為3元”的居民大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面幾何中,我們學過兩條直線平行的定義,下面就兩個一次函數的圖象所確定的兩條直線,給出它們平行的定義:設一次函數y=k1x+b1k1≠0)的圖象為直線l1,一次函數y=k2x+b2k2≠0)的圖象為直線l2,若k1=k2,且b1b2,我們就稱直線l1與直線l2互相平行.解答下面的問題:

(1)求過點P(1,2),且與已知直線y=-2x-1平行的直線l的函數解析式,并畫出圖象;

(2)設直線l分別與y軸,x軸交于點AB,如果直線my=kx+tt>0)與直線l平行,且交x軸于點C,求出△ABC的面積S,關于t函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)畫出△ABC和△A1B1C1關于原點O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點的坐標;

(2)將△ABC繞著點O按順時針方向旋轉90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,DAB上的點,過點DBC于點F,交AC的延長線于點E,連接CD,,則下列結論正確的有( )

DCB=B;②CD=AB;③ADC是等邊三角形;④若E=30°,則DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長方形AOBC在直角坐標系中,點Ay軸上,點Bx軸上,已知點C的坐標是(8,4).

(1)對角線AB的垂直平分線MNx軸于點M,連接AM,求線段AM的長;

(2)在x軸上是否存在一個點P,使PAM為等腰三角形?如果有請直接寫出符合題意的所有點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CE平分∠BCD1=2=70°,3=40°,ABCD是否平行?請說明理由.

查看答案和解析>>

同步練習冊答案