【題目】小軍同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

【答案】(1)見解析(2) 279

【解析】試題分析:(1)由已知信息,根據(jù)頻數(shù)、頻率和總量的關系,求出月均用水量4≤x<5所占百分比和頻數(shù),月均用水量6≤x<7的頻數(shù),從而補全頻數(shù)分布表和頻數(shù)分布直方圖.

(2)求出樣本中家庭月均用水量“大于或等于4t且小于7t” 所占百分比,即可用樣本估計總體.

試題解析:(1)調(diào)查的總數(shù)是50戶,

6≤x<7的戶數(shù)是50×12%=6(), 

4≤x<5的戶數(shù)是50-2-12-10-6-3-2=15(),

所占的百分比是×100%30%.

補全頻數(shù)分布表如下:

月均用水量/t

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

15

30%

5≤x<6

10

20%

6≤x<7

6

12%

7≤x<8

3

6%

8≤x<9

2

4%

補全頻數(shù)分布直方圖如圖.

(2)中等用水量家庭大約有450×(30%+20%+12%)=279().

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:點P是平行四邊形ABCD對角線AC所在直線上的一個動點(點P不與點A、C重合),分別過點A、C向直線BP作垂線,垂足分別為E、F,點O為AC的中點.

(1)當點P與點O重合時如圖1,求證:OE=OF
(2)直線BP繞點B逆時針方向旋轉,當點P在對角線AC上時,且∠OFE=30°時,如圖2,猜想線段CF、AE、OE之間有怎樣的數(shù)量關系?并給予證明.
(3)當點P在對角線CA的延長線上時,且∠OFE=30°時,如圖3,猜想線段CF、AE、OE之間有怎樣的數(shù)量關系?直接寫出結論即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角形OAB中,∠AOB=90°,∠A=60°∠xOA=30°,AB與y軸的交點坐標D為(0,4)。求A、B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

(1)求證:ΔABF≌ΔEDF;
(2)將折疊的圖形恢復原狀,點F與BC邊上的點G正好重合,連接DG,若AB=6,BC=8,.求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )

A.菱形

B.對角線相互垂直的四邊形

C.正方形

D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F.已知AB=4,BC=6,F=55°,求線段EC的長和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為tt0)秒.

1)數(shù)軸上點B表示的數(shù)是   ,點P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:

①當點P運動多少秒時,點P與點Q相遇?

②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.

(1)把圓片沿數(shù)軸向左滾動1周,點A到達數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______;

(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是______;

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當圓片結束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A(2,0),以OA為一邊在第四象限內(nèi)畫正方形OABC,D(m,0)為x軸上的一個動點,以BD為一邊畫正方形BDFE(點E在直線x=2的右側)

(1)當m>2時(如圖1),試判斷線段AE與CD的數(shù)量關系,并說明理由.

(2)當AE=時,求點F的坐標.

(3)連接CF、OF,請直接寫出CF+OF的最小值.

查看答案和解析>>

同步練習冊答案