精英家教網(wǎng)如圖,已知⊙M的半徑為2cm,圓心角∠AMB=120°,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A、B、C三點(diǎn)拋物線的解析式;
(3)點(diǎn)D是位于AB所對的優(yōu)弧上一動(dòng)點(diǎn),求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點(diǎn)P,使△PAB和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
分析:(1)在直角△AMO中,根據(jù)三角函數(shù)就可以求出OM,就可以得到M的坐標(biāo).
(2)根據(jù)三角函數(shù)就可以求出A,B的坐標(biāo),拋物線經(jīng)過點(diǎn)A、B、C,因而M一定是拋物線的頂點(diǎn).根據(jù)待定系數(shù)法就可以求出拋物線的解析式.
(3)四邊形ACBD的面積等于△ABC的面積+△ABP的面積,△ABC的面積一定,△ABP中底邊AB一定,P到AB的距離最大是三角形的面積最大,即當(dāng)P是圓與y軸的交點(diǎn)時(shí)面積最大.
(4)△PAB和△ABC相似,根據(jù)相似三角形的對應(yīng)邊的比相等,就可以求出P點(diǎn)的坐標(biāo).
解答:解:(1)由題意知:∠AMB=120°,
∴∠CMB=60°,∠OBM=30度.(2分)
∴OM=
1
2
MB=1,
∴M(0,1).(3分)

(2)由A,B,C三點(diǎn)的特殊性與對稱性,知經(jīng)過A,B,C三點(diǎn)的拋物線的解析式為y=ax2+c.(4分)
∵OC=MC-MO=1,OB=
MB2-OM2
=
3
,
∴C(0,-1),B(
3
,0).(5分)
∴c=-1,a=
1
3

∴y=
1
3
x2-1.(6分)

(3)∵S四邊形ACBD=S△ABC+S△ABD,又S△ABC與AB均為定值,(7分)
∴當(dāng)△ABD邊AB上的高最大時(shí),S△ABD最大,此時(shí)點(diǎn)D為⊙M與y軸的交點(diǎn).(8分)
∴S四邊形ACBD=S△ABC+S△ABD=
1
2
AB•OC+
1
2
AB•OD
=
1
2
AB•CD
=4
3
cm2.(9分)

(4)假設(shè)存在點(diǎn)P,如下圖所示:精英家教網(wǎng)
方法1:
∵△ABC為等腰三角形,∠ABC=30°,
AB
BC
=
3

∴△ABC∽△PAB等價(jià)于∠PAB=30°,PB=AB=2
3
,PA=
3
PB=6.(10分)
設(shè)P(x,y)且x>0,則x=PA•cos30°-AO=3
3
-
3
=2
3
,y=PA•sin30°=3.(11分)
又∵P(2
3
,3)的坐標(biāo)滿足y=
1
3
x2-1,
∴在拋物線y=
1
3
x2-1上,存在點(diǎn)P(2
3
,3),
使△ABC∽△PAB.
由拋物線的對稱性,知點(diǎn)(-2
3
,3)也符合題意.
∴存在點(diǎn)P,它的坐標(biāo)為(2
3
,3)或(-2
3
,3).(12分)
說明:只要求出(2
3
,3),(-2
3
,3),無最后一步不扣分.下面的方法相同.
方法2:
當(dāng)△ABC∽△PAB時(shí),∠PAB=∠BAC=30°,又由(1)知∠MAB=30°,
∴點(diǎn)P在直線AM上.
設(shè)直線AM的解析式為y=kx+b,
將A(-
3
,0),M(0,1)代入,
解得
k=
3
3
b=1
,
∴直線AM的解析式為y=
3
3
x+1.(10分)
解方程組
y=
3
3
x+1
y=
1
3
x2-1
,
得P(2
3
,3).(11分)
又∵tan∠PBx=
3
2
3
-
3
=
3

∴∠PBx=60度.
∴∠P=30°,
∴△ABC∽△PAB.
∴在拋物線y=
1
3
x2-1上,存在點(diǎn)(2
3
,3),使△ABC∽△PAB.
由拋物線的對稱性,知點(diǎn)(-2
3
,3)也符合題意.
∴存在點(diǎn)P,它的坐標(biāo)為(2
3
,3)或(-2
3
,3).(12分)
方法3:
∵△ABC為等腰三角形,且
AB
BC
=
3
,
設(shè)P(x,y),則△ABC∽△PAB等價(jià)于PB=AB=2
3
,PA=
3
AB=6.(10分)
當(dāng)x>0時(shí),得
(x-
3
)
2
+y2
=2
3
(x+
3
)
2
+y2
=6
,
解得P(2
3
,3).(11分)
又∵P(2
3
,3)的坐標(biāo)滿足y=
1
3
x2-1,
∴在拋物線y=
1
3
x2-1上,存在點(diǎn)P(2
3
,3),使△ABC∽△PAB.
由拋物線的對稱性,知點(diǎn)(-2
3
,3)也符合題意.
∴存在點(diǎn)P,它的坐標(biāo)為(2
3
,3)或(-2
3
,3).(12分)
點(diǎn)評:本題主要考查了二次函數(shù)的知識,其中涉及了待定系數(shù)法求函數(shù)的解析式、相似三角形的對應(yīng)邊的比相等等知識,注意熟練掌握這些知識并靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點(diǎn)O,OP=10cm,射線PN與⊙O相切于點(diǎn)Q.A,B兩點(diǎn)同時(shí)從點(diǎn)精英家教網(wǎng)P出發(fā),點(diǎn)A以5cm/s的速度沿射線PM方向運(yùn)動(dòng),點(diǎn)B以4cm/s的速度沿射線PN方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)求PQ的長;
(2)當(dāng)t為何值時(shí),直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點(diǎn),∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點(diǎn)E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊答案