【題目】觀(guān)察下列圖形,它是把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1);對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,將這種做法繼續(xù)下去(如圖2,圖3…).觀(guān)察規(guī)律解答以下各題:
……
(1)填寫(xiě)下表:
圖形序號(hào) | 挖去三角形的個(gè)數(shù) |
圖1 | 1 |
圖2 | 1+3 |
圖3 | 1+3+9 |
圖4 |
(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)fn(用含n的代數(shù)式表示);
(3)若圖n+1中挖去三角形的個(gè)數(shù)為fn+1,求fn+1-fn
【答案】(1)40;(2)fn=3n-1+3n-2+…+32+3+1;(3)3n
【解析】分析:(1)由圖1挖去中間的1個(gè)小三角形,圖2挖去中間的(1+3)個(gè)小三角形,圖3挖去中間的(1+3+32)個(gè)小三角形,據(jù)此可得;
(2)由(1)中規(guī)律可知fn=3n-1+3n-2+…+32+3+1;
(3)將fn+1=3n+3n-1+…+32+3+1減去fn=3n-1+3n-2+…+32+3+1即可得.
詳解:(1)圖1挖去中間的1個(gè)小三角形,
圖2挖去中間的(1+3)個(gè)小三角形,
圖3挖去中間的(1+3+32)個(gè)小三角形,
則圖4挖去中間的(1+3+32+33)個(gè)小三角形,即圖4挖去中間的40個(gè)小三角形,
(2)由(1)知,圖n中挖去三角形的個(gè)數(shù)fn=3n-1+3n-2+…+32+3+1;
(3)∵fn+1=3n+3n-1+…+32+3+1,
fn=3n-1+3n-2+…+32+3+1
∴fn+1fn=3n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)、是對(duì)角線(xiàn)上兩點(diǎn),且.
(1)求證:四邊形是平行四邊形.
(2)若.,且,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,觀(guān)察向上一面的點(diǎn)數(shù),兩個(gè)骰子的點(diǎn)數(shù)相同的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=13,AC=5,BC邊上的中線(xiàn)AD=6,點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,且ED=AD.
(1)求證:BE∥AC;
(2)求∠CAD的大;
(3)求點(diǎn)A到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2.
(1)畫(huà)出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫(xiě)出點(diǎn)A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫(xiě)出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC.
證明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是井用手搖抽水機(jī)的示意圖,支點(diǎn)A的左端是一手柄,右端是一彎鉤,點(diǎn)F,A,B始終在同一直線(xiàn)上,支點(diǎn)A距離地面100cm,與手柄端點(diǎn)F之間的距離AF=50cm,與彎鉤端點(diǎn)B之間的距離AB=10cm.KT為進(jìn)水管.
(1)在一次取水過(guò)程中,將手柄AF繞支點(diǎn)A旋轉(zhuǎn)到AF′,且與水平線(xiàn)MN的夾角為20°,且此時(shí)點(diǎn)B′,K,T在一條線(xiàn)上,求點(diǎn)F′離地面的高度.
(2)當(dāng)不取水時(shí),將手柄繞支點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至點(diǎn)F′′位置,求端點(diǎn)F′′與進(jìn)水管KT之間的距離.(忽略進(jìn)水管的粗細(xì))(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如右圖所示,圖象過(guò)點(diǎn)(-1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,系列結(jié)論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若點(diǎn)A(-2,y1),點(diǎn)B(,y2),點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com