【題目】如圖,已知D是△ABC中的邊BC上的一點,∠BAD=∠C,∠ABC的平分線交邊AC于E,交AD于F,那么下列結(jié)論中錯誤的是( )

A.△BDF∽△BEC
B.△BFA∽△BEC
C.△BAC∽△BDA
D.△BDF∽△BAE

【答案】A
【解析】∵BE平分∠ABC,
∴∠ABE=∠CBE,
又∵∠BAD=∠C,
∴△BFA∽△BEC,
故B正確.
又∵∠BAD=∠C,∠ABC=∠ABD,
△BAC∽△BDA,
故C正確.
∴∠BFA=∠BEC,
又∵∠BFA+∠BFD=180°,∠BEC+∠BEA=180°,
∴∠BFD=∠BEA,
又∵∠DBF=∠ABE,
∴△BDF∽△BAE,
故D正確.
不能證明△BDF∽△BEC,故A錯誤.
所以答案是:A.
【考點精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個完全一樣的長、寬分別為x、y的長方形紙片圍成一個大正方形ABCD,中間是空的小正方形EFGH.若AB=a,EF=b,判斷以下關(guān)系式:① x + y=a;② xy=b;③ a2b2=2xy;④ x2y2=ab;⑤ x2 + y2=,其中正確的有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90,射線OC繞點OOA位置開始,以每秒4的速度順時針方向旋轉(zhuǎn);同時,射線OD繞點OOB位置開始,以每秒1的速度逆時針方向旋轉(zhuǎn). 當(dāng)OCOA180時,OCOD同時停止旋轉(zhuǎn).

1)當(dāng)OC旋轉(zhuǎn)10秒時,∠COD=___

2)當(dāng)OCOD的夾角是30時,求旋轉(zhuǎn)的時間.

3)當(dāng)OB平分∠COD時,求旋轉(zhuǎn)的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,點P沿線段AB從點A向點B運動,設(shè)AP=x,
(1)求AD的長;
(2)點P在運動過程中,是否存在以A、P、D為頂點的三角形與以P、C、B為頂點的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)直接寫出:當(dāng)△CDP為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標系中,A(﹣15),B(﹣10),C(﹣43).

1SABC   

2)在圖中作出ABC關(guān)于y軸的對稱圖形A1B1C1(其中點A、BC的對稱點分別為點A1、B1C1).

3)寫出點A1、B1C1的坐標.A1   ,B1   C1   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB=3,則菱形AECF的面積為( )

A.1
B.
C.
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是由一副三角板拼成的圖案,其中,,

1)求圖1的度數(shù);

2)若將圖1中的三角板不動,將另一三角板繞點順時針或逆時針旋轉(zhuǎn)度().當(dāng)時,求的度數(shù)(圖2,圖3,圖4僅供參考).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c是正數(shù),下列各式,從左到右的變形不能用如圖驗證的是( 。

A. b+c2b2+2bc+c2

B. ab+c)=ab+ac

C. a+b+c2a2+b2+c2+2ab+2bc+2ac

D. a2+2abaa+2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDABOE平分∠AOD,OFOE,OGCD,∠CDO50°,則下列結(jié)論:

AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結(jié)論的個數(shù)是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊答案