如圖,矩形紙片ABCD中,BC=4,AB=3,點(diǎn)P是BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線(xiàn),交AB于點(diǎn)E.設(shè)BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(      )

A、 B、  C、 D、
D.

試題分析:根據(jù)題意,連接DE,因?yàn)椤鱌CD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又PE為∠BPC′的角平分線(xiàn),可推知∠EPD=90°,又因?yàn)锽P=x,BE=y,BC=4,AB=3,分別用x和y表示出PD和EP和DE,在Rt△PED中利用勾股定理,即可得出一個(gè)關(guān)于x和y的關(guān)系式,化簡(jiǎn)即可:
如圖,連接DE,
∵△PCD沿PD翻折,得到△PC′D,∴DP平分∠CPC′.
又∵PE為∠BPC′的角平分線(xiàn),∴∠EPD=90°.
∵BP=x,BE=y,BC=4,AB=3,
∴Rt△PCD中,PC=4-x,DC=3,故
在Rt△EBP中,BP=x,BE=y,故PE2=x2+y2,
在Rt△ADE中,AE=3-y,AD=4,故,
在Rt△PDE中,DE2=PD2+PE2,即,化簡(jiǎn)得:.
結(jié)合題意,它是開(kāi)口向下的拋物線(xiàn),只有選項(xiàng)D符合題意.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為   ;
(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OAC按O→A→C的路線(xiàn)運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OCA按O→C→A的路線(xiàn)運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看做一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?(6分)
(2)如果李明想要每月獲得2 000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?(3分)
(3)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2 000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量) (3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以點(diǎn)A(,0)為圓心,以為半徑圓與x軸相交于點(diǎn)B,C,與y軸相交于點(diǎn)D,E.

(1)若拋物線(xiàn)經(jīng)過(guò)點(diǎn)C,D兩點(diǎn),求拋物線(xiàn)的解析式,并判斷點(diǎn)B是否在該拋物線(xiàn)上;
(2)在(1)中的拋物線(xiàn)的對(duì)稱(chēng)軸上有一點(diǎn)P,使得△PBD的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo);
(3)設(shè)Q為(1)中的拋物線(xiàn)的對(duì)稱(chēng)軸上的一點(diǎn),在拋物線(xiàn)上是否存在這樣的點(diǎn)M,使得四邊形BCQM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)     (填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=一x2+ax+b圖象與軸交于,兩點(diǎn),且與軸交于點(diǎn).

(1)則的形狀為                 ;
(2)在此拋物線(xiàn)上一動(dòng)點(diǎn),使得以四點(diǎn)為頂點(diǎn)的四邊形是梯形,則點(diǎn)的坐標(biāo)為                     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知正三角形ABC的邊長(zhǎng)為1,E、F、G分別是AB、BC、CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長(zhǎng)為x,則y關(guān)于x的函數(shù)的圖象大致是(  )

A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線(xiàn)y=與x軸交于點(diǎn)A、B,頂點(diǎn)為C,則△ABC的面積為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某玩具批發(fā)商銷(xiāo)售每件進(jìn)價(jià)為40元的玩具,市場(chǎng)調(diào)查發(fā)現(xiàn),若以每件50元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售90件,單價(jià)每提高1元,平均每天就少銷(xiāo)售3件.
(1)平均每天的銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式為         
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)W(元)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式;
(3)物價(jià)部門(mén)規(guī)定每件售價(jià)不得高于55元,當(dāng)每件玩具的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案