【題目】如圖,在正方形中,、分別為邊、的中點,連接、交于點.
(1)求證:;
(2)如圖,連接,,交于點.
①求證:;
②若,求三角形的面積.
【答案】(1)詳見解析;(2)①詳見解析;②
【解析】
(1)由正方形的性質(zhì)可得AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,由SAS可證△ADE≌△BAF,可得∠BAF=∠ADE,由余角的性質(zhì)可得結(jié)論;
(2)①過點B作BN⊥AF于N,由AAS可證△ABN≌△ADG,可得AG=BN,DG=GN,由平行線分線段成比例可得AG=GN,由勾股定理可得結(jié)論;
②由勾股定理可求DE的長,由面積法可求AG的長,由相似三角形的性質(zhì)可求GH的長,由三角形的面積可求解.
解:(1)證明:∵正方形,、分別為邊、的中點,
∴,,,
∴,
∵在△ADE和△BAF中,
,
∴△ADE和△BAF(SAS),
∴,
∵,
∴,
∴;
(2)證明:①如圖,過點作于,
∵,,,
在△ABN和△ADG中,
,
∴△ABN和△ADG(AAS),
∴,,
∵,
∴,
∴,且,
∴,
∴,
∵,
∴;
②∵,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
且,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺按如圖①方式拼接:含30°角的三角尺的長直角邊與含45°角的三角尺的斜邊恰好重合(在Rt△ABC中,∠ACB=90°,∠BAC=30°;在Rt△ACD中,∠ADC=90°∠DAC=45°)已知AB=2,P是AC上的一個動點.
(1)當(dāng)PD=BC時,求∠PDA的度數(shù);
(2)如圖②,若E是CD的中點,求△DEP周長的最小值;
(3)如圖③,當(dāng)DP平分∠ADC時,在△ABC內(nèi)存在一點Q,使得∠DQC=∠DPC,且CQ=,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AD=BD,E為AB的中點,F為CD上一點,連接EF交BD于G.
(1)如圖1,若DF=DG=2,AB=8,求EF的長;
(2)如圖2,∠ADB=90°,點P為平行四邊形ABCD外部一點,且AP=AD,連接BP、DP、EP,DP交EF于點Q,若BP⊥DP,EF⊥EP,求證:DQ=PQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=90°
(1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為點M,N,求證:△ABM∽△BCN;
(2)如圖2,P是BC邊上一點,∠BAP=∠C,tan∠PAC=,BP=2cm,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
(1)反比例函數(shù)的解析式為____________,點的坐標(biāo)為___________;
(2)觀察圖像,直接寫出的解集;
(3)是第一象限內(nèi)反比例函數(shù)的圖象上一點,過點作軸的平行線,交直線于點,連接,若的面積為3,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“村村通公路政策,是近年來國家構(gòu)建和諧社會,支持新農(nóng)村建設(shè)的一項重大公共決策,是一項民心工程,惠民工程某鎮(zhèn)政府準(zhǔn)備向甲、乙兩個工程隊發(fā)包一段“村村通”工程建設(shè)項目,經(jīng)調(diào)查:甲、乙兩隊單獨完成該工程,乙隊所需時間是甲隊的2倍;甲、乙兩隊共同完成該工程需30天;若甲隊每天所需勞務(wù)費用為2400元,乙隊每天所需勞務(wù)費用為1500元,從節(jié)約資金的角度考慮,應(yīng)選擇哪個工程隊更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC于點E,交AB的延長線于點F,連結(jié)AD.
(1)求證:EF為半圓O的切線.
(2)若AO=BF=2,求陰影區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.經(jīng)過市場調(diào)研發(fā)現(xiàn),每月銷售的數(shù)量y(件)是售價x(元/件)的一次函數(shù),其對應(yīng)關(guān)系如表:
x/(元/件) | 22 | 25 | 30 | 35 | … |
y/件 | 280 | 250 | 200 | 150 | … |
在銷售過程中銷售單價不低于成本價,物價局規(guī)定每件商品的利潤不得高于成本價的60%,
(1)請求出y關(guān)于x的函數(shù)關(guān)系式.
(2)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與售價x(元/件)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(3)當(dāng)售價定為多少元/件時,每月可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com