【題目】已知,如圖,在Rt△ABC中,∠ACB=900,AD平分∠CAB交BC于點D,過點C作CE⊥AD,垂足為E,CE的延長線交AB于點F,過點E作EG∥BC交AB于點G, , ,求:(1)AC的長(2)EG的長.
【答案】(1)4;(2)4
【解析】試題分析:(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根據相似三角形對應邊成比例,列出比例式整理即可得到AC2=AEAD,代入數(shù)據計算即可;
(2)根據勾股定理求出BC的長度為8,再根據AD平分∠CAB交BC于點D,CE⊥AD證明△ACE和△AFE全等,根據全等三角形對應邊相等,CE=EF,最后根據三角形的中位線平行于第三邊并且等于第三邊的一半EG=BC.
解:∵CE⊥AD,
∴∠AEC=90°,
∵∠ACB=90°,
∴∠AEC=∠ACB,
又∠CAE=∠CAE,
∴△ACE∽△ADC,
∴AC:AE=AD:AC,
即AC2=AEAD,
∵AEAD=16,
∴AC2=16,
∴AC=4;
(2)在△ABC中,
BC== ,
∵AD平分∠CAB交BC于點D,
∴∠CAE=∠FAE,
∵CE⊥AD,
∴∠AEC=∠AEF=90°,
在△ACE和△AFE中,
,
∴△ACE≌△AFE(ASA),
∴CE=EF,
∵EG∥BC,
∴EG=BC=×8=4.
科目:初中數(shù)學 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個“智慧數(shù)”是______.
【答案】2 687
【解析】解析:觀察數(shù)的變化規(guī)律,可知全部“智慧數(shù)”從小到大可按每三個數(shù)分一組,從第2組開始每組的第一個數(shù)都是4的倍數(shù),歸納可得,第n組的第一個數(shù)為4n(n≥2).因為2 013÷3=671,所以第2 013個“智慧數(shù)”是第671組中的第3個數(shù),即為4×671+3=2 687.
點睛:找規(guī)律題需要記憶常見數(shù)列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.
【題型】填空題
【結束】
19
【題目】如圖,鄭某把一塊邊長為a m的正方形的土地租給李某種植,他對李某說:“我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應了.同學們,你們覺得李某有沒有吃虧?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側)與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D,點E為y軸上一動點,CE的垂直平分線交拋物線于P,Q兩點(點P在第三象限)
(1)求拋物線的函數(shù)表達式和直線BC的函數(shù)表達式;
(2)當△CDE是直角三角形,且∠CDE=90° 時,求出點P的坐標;
(3)當△PBC的面積為時,求點E的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com