【題目】如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測(cè)算小橋所在圓的半徑的活動(dòng).小剛身高1.6米,測(cè)得其影長(zhǎng)為2.4米,同時(shí)測(cè)得EG的長(zhǎng)為3米,HF的長(zhǎng)為1米,測(cè)得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長(zhǎng))為2米,求小橋所在圓的半徑.
【答案】解:∵小剛身高1.6米,測(cè)得其影長(zhǎng)為2.4米, ∴8米高旗桿DE的影子為:12m,
∵測(cè)得EG的長(zhǎng)為3米,HF的長(zhǎng)為1米,
∴GH=12﹣3﹣1=8(m),
∴GM=MH=4m.
如圖,設(shè)小橋的圓心為O,連接OM、OG.
設(shè)小橋所在圓的半徑為r,
∵M(jìn)N=2m,
∴OM=(r﹣2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42 ,
∴r2=(r﹣2)2+16,
解得:r=5,
答:小橋所在圓的半徑為5m.
【解析】根據(jù)已知得出旗桿高度,進(jìn)而得出GM=MH,再利用勾股定理求出半徑即可.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的推論的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧B、弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧C、平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對(duì)稱軸及線段AB的長(zhǎng);
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.0個(gè),或1個(gè),或2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1∥l2∥l3 , 相鄰兩條平行直線間的距離相等,若等腰直角△ABC的三個(gè)頂點(diǎn)分別在這三條平行直線上,則sinα的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線AB過(guò)點(diǎn)A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時(shí),△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù) 的圖象與直線AB相交于C、D兩點(diǎn),若 ,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個(gè)單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請(qǐng)求出S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式(0<t<10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的“中國(guó)學(xué)生營(yíng)養(yǎng)日”活動(dòng)中,設(shè)計(jì)了抽獎(jiǎng)環(huán)節(jié):在一只不透明的箱子中有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個(gè)球,恰好是紅球就能中獎(jiǎng),則中獎(jiǎng)的概率是多少?
(2)同時(shí)摸出兩個(gè)球,都是紅球 就能中特別獎(jiǎng),則中特別獎(jiǎng)的概率是多少?(要求畫樹狀圖或列表求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的“中國(guó)學(xué)生營(yíng)養(yǎng)日”活動(dòng)中,設(shè)計(jì)了抽獎(jiǎng)環(huán)節(jié):在一只不透明的箱子中有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個(gè)球,恰好是紅球就能中獎(jiǎng),則中獎(jiǎng)的概率是多少?
(2)同時(shí)摸出兩個(gè)球,都是紅球 就能中特別獎(jiǎng),則中特別獎(jiǎng)的概率是多少?(要求畫樹狀圖或列表求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對(duì)折,得到△BPF(如圖2),延長(zhǎng)FP到BA的延長(zhǎng)線于點(diǎn)Q,求sin∠BQP的值;
(3)將△ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的面積為4時(shí),求四邊形GHMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,添加下列條件不能判定ABCD是菱形的只有( )
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com