【題目】如圖,在△ABC中,∠C90°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列結論:①AD是∠BAC的平分線;②若∠B30°,則DADB;③ABAC2:1;④點DAB的垂直平分線上.一定成立的個數(shù)為(

A.1B.2C.3D.4

【答案】B

【解析】

依據角平分線的的作法、等腰三角形的判定、直角三角形中,30°的角所對的直角邊等于斜邊的一半、垂直平分線的判定,即可得出結論.

①由作圖可得,AD是∠BAC的平分線;故①正確;
②當∠B=30°時,∠BAC=60°,
∴∠BAD=BAC=30°,
∴∠B=BAD,
AD=BD,故②正確;
③在直角三角形ABC中,當∠B=30°時,ABAC2:1

因為不知道∠B的度數(shù),故③錯誤;
④∵∠B與∠BAD不一定相等,
ADBD不一定相等,
∴點D不一定在AB的垂直平分線上,故④錯誤;
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】花香村計劃改造一片林地,估計這片林地可種梨樹80~133.根據經驗,若種100棵樹,果樹成熟后平均每棵樹上能結500個梨,在這個基礎上每多種一棵梨樹,平均每棵會少結3個梨,每少種一棵,平均每棵樹會多結4個梨.

1)如果種植110棵梨樹,則總共能結多少個梨?

2)設種植x棵梨樹,總共能結y個梨,

①當80≤x≤100時,求出yx之間的函數(shù)關系式;

②當100<x≤134時,求出yx之間的函數(shù)關系式;

3)種多少棵梨樹,總共能結的梨數(shù)最多?最多是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的解題過程,再解答問題:

如圖,已知ABCD,∠B40°,∠D30°,求∠BED的度數(shù).

解:過點EEFAB,則ABCDEF,

因為EFAB,所以∠1=∠B40°

又因為CDEF,所以∠2=∠D30°

所以∠BED=∠1+240°+30°=70°.

如圖是小軍設計的智力拼圖玩具的一部分,現(xiàn)在小軍遇到兩個問題,請你幫他解決:

1)如圖B45°,∠BED75°,為了保證ABCD,∠D必須是多少度?請寫出理由.

2)如圖,當∠G、∠GFP、∠P滿足什么關系時,GHPQ,請直接寫出滿足關系的式子,并在如圖中畫出需要添加的輔助線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點,E是AD的中點過點A作AFBC交BE的延長線于點F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一塊長為22 m,寬為17 m的矩形地面上要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設道路寬為x m根據題意可列出方程為______________________________

【答案】(22-x)(17-x)=300(或x2-39x+74=0)

【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個長方形,根據長方形的面積公式列方程.設道路的寬應為x米,由題意有(22﹣x)(17﹣x=300,故答案為:(22﹣x)(17﹣x=300

考點:由實際問題抽象出一元二次方程.

型】填空
束】
17

【題目】x=1是關于x的一元二次方程x2+mx﹣5=0的一個根,則此方程的另一個根是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好治理某湖水質,保護環(huán)境,市治污公司決定購買臺污水處理設備.現(xiàn)有兩種型號的設備,其中每臺的價格,月處理污水量如下表.經調查:購買一臺型設備比購買一臺型設備多萬元,購買型設備比購買型設備少萬元.

價格(萬元/臺)

處理污水量(噸/月)

)求,的值.

)經預算:市治污公司購買污水處理設備的資金不超過萬元,你認為該公司有哪幾種購買方案.

)在()問的條件下,若每月要求處理該湖的污水量不低于噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:(1) ; 2.

【答案】1x1 =1 x2=; (2) x1 =-1,x2= .

【解析】試題分析:

根據兩方程的特點,使用“因式分解法”解兩方程即可.

試題解析

1)原方程可化為:

方程左邊分解因式得 ,

,

解得 , .

2)原方程可化為: ,即

,

,

解得 .

型】解答
束】
20

【題目】已知x1,x2是關于x的一元二次方程x22(m1)xm250的兩實根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

(1)在圖中畫出△A1B1C1

(2)點A1,B1,C1的坐標分別為   、      ;

(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,K是正方形ABCD內一點,以AK為一邊作正方形AKLM,使L,M,DAK的同旁,連接BKDM,試用旋轉的思想說明線段BKDM的關系.

查看答案和解析>>

同步練習冊答案