【題目】如圖1,正方形ABCD的邊ADy軸上,拋物線y=ax﹣22﹣1經(jīng)過點A、B,與x相交于點EF,且其頂點MCD上.

1)請直接寫出點A的坐標(biāo) ,并寫出a的值 ;

2)若點P是拋物線上一動點(點P不與點A、點B重合),過點Py軸的平行線l與直線AB交于點G,與直線BD交于點H,如圖2

當(dāng)線段PH=2GH時,求點P的坐標(biāo);

當(dāng)點P在直線BD下方時,點K在直線BD上,且滿足KPH∽△AEF,求KPH周長的最大值.

【答案】10,3);2;2P的坐標(biāo)為(30)或(﹣1,8).

【解析】

試題分析:1)根據(jù)拋物線的對稱性、拋物線的頂點坐標(biāo)以及正方形四邊都相等的性質(zhì)解答;

2根據(jù)待定系數(shù)法可得直線BD的解析式,設(shè)點P的坐標(biāo)為(x,x2﹣4x+3),則點Hxx﹣1),點Gx,3).分三種情況:i)當(dāng)x≥1x≠4時;ii)當(dāng)0x1時;iii)當(dāng)x0時;三種情況討論可得點P的坐標(biāo);

根據(jù)相似三角形的性質(zhì)可得SKPH=PH2=﹣x2+5x﹣42,再根據(jù)二次函數(shù)的增減性可得KPH面積的最大值.

解:(1)如圖1,拋物線的解析式為y=ax﹣22﹣1,頂點是M,

M2,﹣1).

四邊形ABCD是正方形,

OD=1,DC=BC=AB=AD=4,

A03).

A0,3)代入y=ax﹣22﹣1,得

3=a0﹣22﹣1,

解得a=2

故答案是:(0,3);2;

2設(shè)直線BD的解析式為y=kx+bk≠0),由于直線BD經(jīng)過D0,﹣1),B4,3),

解得,

故直線BD的解析式為y=x﹣1

設(shè)點P的坐標(biāo)為(xx2﹣4x+3),則點Hx,x﹣1),點Gx,3).

i)當(dāng)x≥1x≠4時,點GPH的延長線上,如圖2

PH=2GH,

x﹣1x2﹣4x+3=2[3﹣x﹣1],

x2﹣7x+12=0

解得x1=3,x2=4

當(dāng)x2=4時,點PH,G重合于點B,舍去.

x=3

此時點P的坐標(biāo)為(3,0).

ii)當(dāng)0x1時,點GPH的反向延長線上,如圖3PH=2GH不成立.

iii)當(dāng)x0時,點G在線段PH上,如圖4

PH=2GH,

x2﹣4x+3x﹣1=2[3﹣x﹣1],

x2﹣3x﹣4=0,解得x1=﹣1,x2=4(舍去),

x=﹣1.此時點P的坐標(biāo)為(﹣18).

綜上所述可知,點P的坐標(biāo)為(3,0)或(﹣1,8).

如圖5,令x2﹣4x+3=0,得x1=1,x2=3,

E1,0),F3,0),

EF=2

SAEF=EFOA=3

∵△KPH∽△AEF,

=2,

SKPH=PH2=﹣x2+5x﹣42

1x4,

當(dāng)x=時,SKPH的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2﹣x﹣m=0的一個根是x=1,則m的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=5,AF平分DAE,EFAE,求CF的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在口ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O.將直線AC繞點O順時針旋轉(zhuǎn)分別交BC、AD于點E、F.

1試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;

2證明:當(dāng)旋轉(zhuǎn)角為90時,四邊形ABEF是平行四邊形;

3在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,求出此時AC繞點O順時針旋轉(zhuǎn)的角度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種“24點”游戲,其游戲規(guī)則是這樣的,將4個113之間的數(shù),進行加減乘除四則運算(每個數(shù)且只能用一次),使運算結(jié)果為24,例如,1,2,3,4可作如下運算:(1+2+3)×4=24,1×2×3×4=24.現(xiàn)有四個有理數(shù)3,4,﹣6,10,你能運用上述規(guī)則,寫出一種運算式,使其結(jié)果等于24.你寫出算式是:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一長方形休閑廣場的四角都設(shè)計一塊半徑相同的四分之一圓的花壇,正中設(shè)計一個圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場長為米,寬為米.

(1)請列式表示廣場空地的面積;

(2)若休閑廣場的長為500米,寬為300米,圓形花壇的半徑為20米,求廣場空地的面積(計算結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD 邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當(dāng)點P到達點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數(shù)有(

A.4次 B.3次 C.2次 D.1次

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個兩位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,用代數(shù)式表示這個兩位數(shù)是( 。

A. ab B. ba C. 10a+b D. 10b+a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC三個頂點坐標(biāo)分別是A(1,3),B(4,1),C(4,4).

(1)請按要求畫圖:

畫出ABC向左平移5個單位長度后得到的A1B1C1;

畫出ABC繞著原點O順時針旋轉(zhuǎn)90°后得到的A2B2C2

(2)請寫出直線B1C1與直線B2C2的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案