【題目】如圖,頂點為A1)的拋物線經(jīng)過坐標原點O,與x軸交于點B

(1)求拋物線對應的二次函數(shù)的表達式;

(2)過BOA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;

(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標.

【答案】1y=x2+x;(2見解析;(3)點P的坐標為(﹣,0

【解析】試題分析:(1)用待定系數(shù)法求出拋物線解析式,(2)先求出直線OA對應的一次函數(shù)的表達式為y=x.再求出直線BD的表達式為y=x2.最后求出交點坐標C,D即可;

3)先判斷出C'Dx軸的交點即為點P,它使得△PCD的周長最小.作輔助線判斷出△C'PO∽△C'DQ即可.

試題解析:(1∵拋物線頂點為A,1),設拋物線解析式為y=ax2+1,將原點坐標(00)在拋物線上,0=a2+1

a=∴拋物線的表達式為y=x2+x

2)令y=0, 0=x2+x,x=0(舍),x=2

B點坐標為:(20),設直線OA的表達式為y=kxA,1)在直線OAk=1,k=∴直線OA對應的一次函數(shù)的表達式為y=x

BDAO,設直線BD對應的一次函數(shù)的表達式為y=x+bB20)在直線BD,0=×2+b,b=2,∴直線BD的表達式為y=x2

得交點D的坐標為(﹣,3),x=0,y=2,C點的坐標為(02),由勾股定理OA=2=OC,AB=2=CDOB=2=OD

在△OAB與△OCD, ∴△OAB≌△OCD

3)點C關于x軸的對稱點C'的坐標為(0,2),C'Dx軸的交點即為點P它使得△PCD的周長最。

過點DDQy,垂足為Q,PODQ∴△C'PO∽△C'DQ,,PO=∴點P的坐標為(﹣,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(12),

1)寫出點AB的坐標:A , )、B ,

2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△ABC′,畫出△ABC

3)寫出三個頂點坐標A′( 、 )、B′( )、C 、

4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費,超出10噸的部分按2/噸收費,則某戶居民一個月用水8噸,則應繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應繳水費:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費標準是   /噸,超過部分的收費標準是   /噸.

(2)若小明家五月份用水20噸,則應繳水費   元.

(3)若小明家六月份應繳水費46元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列不等式組解應用題:我校新校區(qū)級新生中有女生若干名需住校,已知我校新校區(qū)有若干間宿舍,每間住人,剩人無房;每間住人,有一間宿舍住不滿,問可能有多少間宿舍,多少名女生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB3BC4.將△BCD沿對角線BD翻折得到△BED,BEAD于點O

1)判斷△BOD的形狀,并證明;(2)直接寫出線段OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年高中一年級學生開始,湖南省全面啟動高考綜合改革,學生學習完必修課程后,可以根據(jù)高校相關專業(yè)的選課要求和自身興趣、志向、優(yōu)勢,從思想政治、歷史、地理、物理、化學、生物6個科目中,自主選擇3個科目參加等級考試.學生已選物理,還想從思想政治、歷史、地理3個文科科目中選1科,再從化學、生物2個理科科目中選1.若他選思想政治、歷史、地理的可能性相等,選化學、生物的可能性相等,則選修地理和生物的概率為___________.

查看答案和解析>>

同步練習冊答案