【題目】如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是cm.

【答案】10
【解析】解:如圖,設(shè)圓心為O,弦為AB,切點(diǎn)為C.如圖所示.則AB=8cm,CD=2cm. 連接OC,交AB于D點(diǎn).連接OA.
∵尺的對邊平行,光盤與外邊緣相切,
∴OC⊥AB.
∴AD=4cm.
設(shè)半徑為Rcm,則R2=42+(R﹣2)2 ,
解得R=5,
∴該光盤的直徑是10cm.
所以答案是:10

【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能確定△ABC是直角三角形的條件有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次根式 能夠合并,能否由此確定a=1?若能,請說明理由;不能,請舉一個(gè)反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線,MN經(jīng)過點(diǎn)C,且ADMN于點(diǎn)D,BEMN于點(diǎn)E.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖2的位置時(shí),求證:DE=AD﹣BE;

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖3的位置時(shí),線段DE、AD、BE之間又有什么樣的數(shù)量關(guān)系?請你直接寫出這個(gè)數(shù)量關(guān)系,不要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若不等式組 ,的整數(shù)解是關(guān)于x的方程2x-4=ax的根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長度、再向上平移2個(gè)單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對稱,請直接寫出對稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說明理由;
(2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長線交于點(diǎn)G,AD的延長線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知OAB,EOF都是等腰直角三角形,AOB=900,EOF=900連結(jié)AE、BF

求證:(1AE=BF;(2AEBF

查看答案和解析>>

同步練習(xí)冊答案