精英家教網 > 初中數學 > 題目詳情

【題目】平面上有3個點的坐標:A(0,﹣3),B(3,0),C(﹣1,﹣4).
(1)在A,B,C三個點中任取一個點,這個點既在直線y1=x﹣3上又在拋物線上y2=x2﹣2x﹣3上的概率是多少?
(2)從A,B,C三個點中任取兩個點,求兩點都落在拋物線y2=x2﹣2x﹣3上的概率.

【答案】
(1)解:當x=0時,y1=x﹣3=﹣3,y2=x2﹣2x﹣3=﹣3,則A點在直線和拋物線上;

當x=3時,y1=x﹣3=0,y2=x2﹣2x﹣3=0,則B點在直線和拋物線上;

當x=﹣1時,y1=x﹣3=﹣4,y2=x2﹣2x﹣3=0,則C點在直線上,不在拋物線上,

所以在A,B,C三個點中任取一個點,這個點既在直線y1=x﹣3上又在拋物線上y2=x2﹣2x﹣3上的概率=


(2)解:畫樹狀圖為:

共有6種等可能的結果數,其中兩點都落在拋物線y2=x2﹣2x﹣3上的結果數為2,

所以兩點都落在拋物線y2=x2﹣2x﹣3上的概率= =


【解析】(1)先根據一次函數圖象上點的坐標特征和二次函數圖象上點的坐標特征可判斷A、B、C都在直線上,A、B兩點在拋物線上,C點不在拋物線上,然后根據概率公式求解;(2)先畫樹狀圖展示所有6種等可能的結果數,再找出兩點都落在拋物線y2=x2﹣2x﹣3上的結果數,然后根據概率公式求解.
【考點精析】根據題目的已知條件,利用列表法與樹狀圖法和概率公式的相關知識可以得到問題的答案,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某公司營銷A、B兩種產品,根據市場調研,發(fā)現如下信息: 信息1:銷售A種產品所獲利潤y(萬元)與銷售產品x(噸)之間存在二次函數關系y=ax2+bx.在x=1時,y=1.4;當x=3時,y=3.6.
信息2:銷售B種產品所獲利潤y(萬元)與銷售產品x(噸)之間存在正比例函數關系y=0.3x.
根據以上信息,解答下列問題;
(1)求二次函數解析式;
(2)該公司準備購進A、B兩種產品共10噸,請設計一個營銷方案,使銷售A、B兩種產品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=10,BC= ,以AB為直徑的⊙O分別交BC、AC于點D、E.

(1)求AE;
(2)過D作DF⊥AC于F,請畫出圖形,說明DF是否是⊙O的切線,并寫出理由;
(3)延長FD,交AB的延長線于G,請畫出圖形,并求BG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)(﹣1)2+tan45°﹣
(2)已知 = ,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC與△BDE都是等邊三角形,點D在邊AC上(不與A,C重合),DE與AB相交于點F,則圖中有( )對相似三角形.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,B,C,D,E在⊙O上,AB⊥CB于點B,tanD=3,BC=2,H為CE延長線上一點,且AH= ,CH=5

(1)求證:AH是⊙O的切線;
(2)若點D是弧CE的中點,且AD交CE于點F,求證:HF=HA;
(3)在(2)的條件下,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,AD⊥BC于點D,點E為AC邊的中點,過點A作AF∥BC,交DE的延長線于點F,連接CF.
(1)如圖1,求證:四邊形ADCF是矩形;
(2)如圖2,當AB=AC時,取AB的中點G,連接DG、EG,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形ADCF).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某園林部門決定利用現有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個,擺放在迎賓大道兩側.已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆.
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設計,問符合題意的搭配方案有幾種?請你幫助設計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,過點D、A分別作⊙O的切線交于點G,并與AB延長線交于點E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.

查看答案和解析>>

同步練習冊答案