【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表達(dá)線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值.
【答案】(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1
【解析】
(1)將點A、B的坐標(biāo)代入拋物線表達(dá)式,即可求解;
(2)點M、N的坐標(biāo)分別為:(t,2t2+t+1)、(t,t2+t-1),即可求解;
(3)分∠ANM=90°、∠AMN=90°兩種情況,分別求解即可.
解:(1)將點A、B的坐標(biāo)代入拋物線表達(dá)式得:,解得:,
故拋物線C1的表達(dá)式為:y=x2+x﹣1;
(2)點M、N的坐標(biāo)分別為:(t,2t2+t+1)、(t,t2+t﹣1),
則MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;
(3)①當(dāng)∠ANM=90°時,AN=MN,
AN=t﹣(﹣2)=t+2,MN=t2+2,
t=t2+2,解得:t=0或1(舍去0),故t=1;
②當(dāng)∠AMN=90°時,AM=MN,
AM=t+2=MN=t2+2,
解得:t=0或1(舍去1),故t=1;
綜上,t=0或1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道,一是運(yùn)往省城直接批發(fā)給零售商,二是在本地市場零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見右表:
(1)若一部分草莓運(yùn)往省城批發(fā)給零售商,其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運(yùn)往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式;
(2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤最大?并求出最大純利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=16,點D為BC邊上的一個動點(點D不與點B、點C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F.
(1)求證:ABCE=BDCD;
(2)當(dāng)DF平分∠ADC時,求AE的長;
(3)當(dāng)△AEF是等腰三角形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:D是BC的中點;
(2)若BA⊥AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D. 點E在BC上,EF⊥AB,垂足為F,∠1=∠2.
(1)試說明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為“不稱職”,當(dāng) 時為“基本稱職”,當(dāng) 時為“稱職”,當(dāng) 時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全折線統(tǒng)計圖和扇形統(tǒng)計圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個轉(zhuǎn)盤被分成等分,每一份上各寫有一個數(shù)字,隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字?jǐn)?shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個位數(shù)字,次轉(zhuǎn)動后組成一個兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)
用畫樹狀圖的方法求出轉(zhuǎn)動后所有可能出現(xiàn)的兩位數(shù)的個數(shù).
甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時甲勝,否則乙勝,這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點B,C位于x軸上方,將直線l:y=x﹣3沿x軸向左以每秒1個單位長度的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t秒,m與t的函數(shù)圖象如圖2所示,則a,b的值分別是( 。
A.6,B.6,C.7,7D.7,5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com