【題目】如圖,在⊙O中,AB是直徑,弦BE的垂直平分線交⊙O于點(diǎn)C,CDABD,AD1,BE6,則BD的長(zhǎng)為__

【答案】9

【解析】

先證△BOF≌△COD,即可得CD=BF,根據(jù)垂徑定理即可求出BF,從而求出CD,再根據(jù)勾股定理列方程即可求出圓的半徑,從而求出BD.

BE的垂直平分線交BE于點(diǎn)F

BFBE3,∠BFO90°,

CDAB,

∴∠ODC=∠BFO90°,

OBOC,∠BOF=∠COD

∴△BOF≌△CODAAS),

CDBF3,

設(shè)⊙O的半徑為r,則OD=OA-AD=r1,

由勾股定理得:OC2OD2+CD2

r2=(r12+32,

r5,

BDAB12×519,

故答案為:9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程,下列判斷不正確的是(

A.若方程有兩個(gè)實(shí)數(shù)根,則方程也有兩個(gè)實(shí)數(shù)根;

B.如果是方程的一個(gè)根,那么的一個(gè)根;

C.如果方程有一個(gè)根相等,那么這個(gè)根是1;

D.如果方程有一個(gè)根相等,那么這個(gè)根是1-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.

(1)若BPQABC相似,求t的值;

(2)連接AQ、CP,若AQCP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在⊙O中,點(diǎn)C為劣弧AB的中點(diǎn),連接AC并延長(zhǎng)至D,使CA=CD,連接DB并延長(zhǎng)交⊙O于點(diǎn)E,連接AE.

(1)求證:AE⊙O的直徑;

(2)如圖2,連接CE,⊙O的半徑為5,AC長(zhǎng)為4,求陰影部分面積之和.(保留與根號(hào)) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10(每件售價(jià)不能高于65),設(shè)每件商品的售價(jià)上漲(為正整數(shù)),每個(gè)月的銷售利潤(rùn)為元.

(1)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大月利潤(rùn)是多少元?

(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2 200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD和正方形AEFG中,點(diǎn)B在邊AG上,點(diǎn)D在線段EA的延長(zhǎng)線上,連接BE

1)如圖1,求證:DGBE

2)如圖2,將正方形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)B恰好落在線段DG上.

①求證:DGBE

②若AB2,AG3,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=∠DCE90°,∠CAB=∠CDE45°,點(diǎn)D時(shí)線段AB上一動(dòng)點(diǎn),連接BE

填空:①的值為   ; ②∠DBE的度數(shù)為   

2)類比探究

如圖2,在RtABCRtCDE中,∠ACB=∠DCE90°,∠CAB=∠CDE60°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說明理由;

3)拓展延伸

如圖3,在(2)的條件下,將點(diǎn)D改為直線AB上一動(dòng)點(diǎn),其余條件不變,取線段DE的中點(diǎn)M,連接BM、CM,若AC2,則當(dāng)CBM是直角三角形時(shí),線段BE的長(zhǎng)是多少?請(qǐng)直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小型工廠9月份生產(chǎn)的A、B兩種產(chǎn)品數(shù)量分別為200件和100件,AB兩種產(chǎn)品出廠單價(jià)之比為21,由于訂單的增加,工廠提高了A、B兩種產(chǎn)品的生產(chǎn)數(shù)量和出廠單價(jià),10月份A產(chǎn)品生產(chǎn)數(shù)量的增長(zhǎng)率和A產(chǎn)品出廠單價(jià)的增長(zhǎng)率相等,B產(chǎn)品生產(chǎn)數(shù)量的增長(zhǎng)率是A產(chǎn)品生產(chǎn)數(shù)量的增長(zhǎng)率的一半,B產(chǎn)品出廠單價(jià)的增長(zhǎng)率是A產(chǎn)品出廠單價(jià)的增長(zhǎng)率的2倍.設(shè)B產(chǎn)品生產(chǎn)數(shù)量的增長(zhǎng)率為xx0).

1)用含有x的代數(shù)式填表(不需化簡(jiǎn)):

9月份生產(chǎn)數(shù)量

生產(chǎn)數(shù)量的增長(zhǎng)率

10月份生產(chǎn)數(shù)量

產(chǎn)品A

200

   

   

產(chǎn)品B

100

x

   

2)若9月份兩種產(chǎn)品出廠單價(jià)的和為90元,10月份該工廠的總收入增加了4.4x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識(shí)競(jìng)賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問題:

1)獲得一等獎(jiǎng)的學(xué)生人數(shù);

2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案