【題目】定義:若兩條拋物線在x軸上經(jīng)過兩個(gè)相同點(diǎn),那么我們稱這兩條拋物線是“同交點(diǎn)拋物線”,在x軸上經(jīng)過的兩個(gè)相同點(diǎn)稱為“同交點(diǎn)”,已知拋物線y=x2+bx+c經(jīng)過(2,0)(4,0),且一條與它是“同交點(diǎn)拋物線”的拋物線y=ax2+ex+f經(jīng)過點(diǎn)(33)

1)求b、ca的值;

2)已知拋物線y=x2+2x+3與拋物線yn=x2xnn為正整數(shù))

①拋物線y和拋物線yn是不是“同交點(diǎn)拋物線”?若是,請(qǐng)求出它們的“同交點(diǎn)”,并寫出它們一條相同的圖像性質(zhì);若不是,請(qǐng)說明理由.

②當(dāng)直線y=x+m與拋物線y、yn,相交共有4個(gè)交點(diǎn)時(shí),求m的取值范圍.

③若直線y=kk<0)與拋物線y=x2+2x+3與拋物線yn =x2xn n為正整數(shù))共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D,當(dāng)AB=BC=CD時(shí),求出k、n之間的關(guān)系式

【答案】(1),,;(2)①是“同交點(diǎn)拋物線”,“同交點(diǎn)”為:(–1,0)、(30),它們圖形共同性質(zhì)有:對(duì)稱軸同為直線;②,且;③

【解析】

(1)(–2,0)( –4,0)代入,即可求得b、c的值,設(shè)同交點(diǎn)拋物線的解析式為,將(–3,3)代入即可求得的值;

(2)①令,分別求得與軸的交點(diǎn)坐標(biāo),即可作出判斷;

②先求得直線與拋物線或拋物線只有一個(gè)交點(diǎn)時(shí)的值,除去直線經(jīng)過同交點(diǎn)時(shí)的的值,即可求解;

③由利用根與系數(shù)的關(guān)系求得的值,再根據(jù),得到即可求得答案.

(1) ∵拋物線經(jīng)過(–2,0)、( –4,0),則代入得:

解得:,,

設(shè)同交點(diǎn)拋物線的解析式為

(–3,3)代入得:,

解得:,

故答案為:,,

(2)①令,則

解得:,

∴拋物線軸的交點(diǎn)坐標(biāo)為:(–10)、(30),

,則,

解得:,

∴拋物線軸的交點(diǎn)坐標(biāo)為:(–1,0)、(3,0),

∴拋物線和拋物線同交點(diǎn)拋物線,

它們圖形共同性質(zhì):對(duì)稱軸同為直線;

②當(dāng)直線與拋物線y相交只有1個(gè)交點(diǎn)時(shí),

,得:,

解得:,

拋物線的頂點(diǎn)坐標(biāo)為(1,),其中為正整數(shù),

因?yàn)殡S著的增大,的頂點(diǎn)縱坐標(biāo)減小,所以當(dāng)直線與拋物線時(shí)的拋物線相交只有1個(gè)交點(diǎn)時(shí),

,得:

,

解得:,

如圖所示:

當(dāng)直線經(jīng)過同交點(diǎn)時(shí)與兩拋物線只有三個(gè)交點(diǎn),

同交點(diǎn)”(–1,0)代入得:

同交點(diǎn)” (3,0)代入得:

∴當(dāng)直線與拋物線、4個(gè)交點(diǎn)時(shí),m的取值范圍為:

,且,

③設(shè)直線分別與拋物線和拋物線相交于A、D、B、C,如圖:

,得:,

,

,

,得:

,

,

,

,

,

整理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC12EAD中點(diǎn),FAB上一點(diǎn),將△AEF沿EF折疊后,點(diǎn)A恰好落到CF上的點(diǎn)G處,則折痕EF的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A'處,若AOOB2,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時(shí)經(jīng)過點(diǎn)P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點(diǎn)P為共享點(diǎn).

1)判斷y2x1y是否存在“共享函數(shù)”,如果存在,請(qǐng)求出“共享點(diǎn)”.如果不存在,請(qǐng)說明理由;

2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.

3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,隨著電子產(chǎn)品的廣泛應(yīng)用,學(xué)生的近視發(fā)生率出現(xiàn)低齡化趨勢(shì),引起了相關(guān)部門的重視.某區(qū)為了了解在校學(xué)生的近視低齡化情況,對(duì)本區(qū)7-18歲在校近視學(xué)生進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,并繪制了以下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,回答下列問題:

1)這次抽樣調(diào)查中共調(diào)查了近視學(xué)生 人;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中10-12歲部分的圓心角的度數(shù)是 ;

4)據(jù)統(tǒng)計(jì),該區(qū)7-18歲在校學(xué)生近視人數(shù)約為10萬,請(qǐng)估計(jì)其中7-12歲的近視學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),BG與⊙O相切于點(diǎn)B,交AC的延長線于點(diǎn)D(點(diǎn)D在線段BG上),AC = 8,tanBDC =

1)求⊙O的直徑;

(2)當(dāng)DG=時(shí),過G,交BA的延長線于點(diǎn)E,說明EG與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個(gè)圖形的周長為4,第2個(gè)圖形的周長為10,第3個(gè)圖形的周長為18,,按此規(guī)律排列,回答下列問題:

(1)5個(gè)圖形的周長為 ;

(2)個(gè)圖形的周長為

(3)若第個(gè)圖形的周長為180,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測(cè)量瀑布的高度,測(cè)量人員在瀑布對(duì)面山上的點(diǎn)處測(cè)得瀑布頂端點(diǎn)的仰角是,測(cè)得瀑布底端點(diǎn)的俯角是,與水平面垂直.又在瀑布下的水平面測(cè)得(注:、三點(diǎn)在同一直線上,于點(diǎn)),斜坡,坡角,那么瀑布的高度約為( ).(精確到,參考數(shù)據(jù):,,,,

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案