(2013•重慶)如圖,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足為D,CD=1,則AB的長為( 。
分析:在Rt△ACD中求出AD,在Rt△CDB中求出BD,繼而可得出AB.
解答:解:在Rt△ACD中,∠A=45°,CD=1,
則AD=CD=1,
在Rt△CDB中,∠B=30°,CD=1,
則BD=
3
,
故AB=AD+BD=
3
+1.
故選D.
點評:本題考查了等腰直角三角形及含30°角的直角三角形的性質(zhì),要求我們熟練掌握這兩種特殊直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,CD=3cm,則AF的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,矩形紙片ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿AE對折,使得點B落在邊AD上的點B1處,折痕與邊BC交于點E,則CE的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案