【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線 (k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)C恰好落在該雙曲線上,則a的值是( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G.作DF⊥x軸于點(diǎn)F.
在y=﹣3x+3中,令x=0,解得:y=3,即B的坐標(biāo)是(0,3).
令y=0,解得:x=1,即A的坐標(biāo)是(1,0).
則OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
∵在△OAB和△FDA中,
,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐標(biāo)是(4,1),C的坐標(biāo)是(3,4).代入y= 得:k=4,則函數(shù)的解析式是:y= .
∴OE=4,
則C的縱坐標(biāo)是4,把y=4代入y= 得:x=1.即G的坐標(biāo)是(1,4),
∴CG=2.
故選:B.
【考點(diǎn)精析】掌握圖形的平移和平移的性質(zhì)是解答本題的根本,需要知道對應(yīng)線段,對應(yīng)點(diǎn)所連線段平行(或在同一直線上)且相等;對應(yīng)角相等;平移方向和距離是它的兩要素;①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),且AE與DE分別平分∠BAD和∠ADC
(1)求證:AE⊥DE;
(2)設(shè)以AD為直徑的半圓交AB于F,連結(jié)DF交AE于G,已知CD=5,AE=8.
①求BC的長;
②求 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊AB,BC的中點(diǎn).若△DBE的周長是6,則△ABC的周長是( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;
(2)求△AOB的面積;
(3)我們知道,一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向下平移1個(gè)長度單位得到.試結(jié)合平移解決下列問題:在(1)的條件下,請你試探究:
①函數(shù)y= 的圖象可以由y= 的圖象經(jīng)過怎樣的平移得到?
②點(diǎn)P(x1 , y1)、Q (x2 , y2) 在函數(shù)y= 的圖象上,x1<x2 . 試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)y1<y2<0時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點(diǎn),O是三角形內(nèi)部一點(diǎn),連接OB、OC,G、H分別是OC、OB的中點(diǎn),試說明四邊形DEGH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條筆直的公路l1、l2相交于點(diǎn)O,村莊C的村民在公路的旁邊建三個(gè)加工廠 A、B、D,已知AB=BC=CD=DA=5公里,村莊C到公路l1的距離為4公里,則村莊C到公路l2的距離是( )
A.3公里
B.4公里
C.5公里
D.6公里
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com