【題目】如圖,已知E為長方形紙片ABCD的邊CD上一點,將紙片沿AE對折,點D的對應(yīng)點D′恰好在線段BE上.若AD=3,DE=1,則AB=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若拋物線的頂點和與x軸的兩個交點所組成的三角形為等邊三角形時.則稱此拋物線為正拋物線.
概念理解:
(1)如圖,在△ABC中,∠BAC=90°,點D是BC的中點.試證明:以點A為頂點,且與x軸交于D、C兩點的拋物線是正拋物線;
問題探究:
(2)已知一條拋物線經(jīng)過x軸的兩點E、F(E在F的左邊),E(1,0)且EF=2若此條拋物線為正拋物線,求這條拋物線的解析式;
應(yīng)用拓展:
(3)將拋物線y1=﹣x2+2x+9向下平移9個單位后得新的拋物線y2.拋物線y2的頂點為P,與x軸的兩個交點分別為M、N(M在N左側(cè)),把△PMN沿x軸正半軸無滑動翻滾,當(dāng)邊PN與x軸重合時記為第1次翻滾,當(dāng)邊PM與x軸重合時記為第2次翻滾,依此類推…,請求出當(dāng)?shù)?/span>2019次翻滾后拋物線y2的頂點P的對應(yīng)點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點,已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數(shù);
(2)求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,O是坐標原點,點P(m,n)在反比例函數(shù)的圖象上.
(1)若m=k,n=k﹣2,則k=_____;
(2)若m+n=k,OP=2,且此反比例函數(shù),滿足:當(dāng)x>0時,y隨x的增大而減小,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠C = 90°,AC = 6,BC = 8.如果小明同學(xué)將紙片做了兩次折疊.第一次使點A落在C處,在紙片上的折痕長記為m;然后將紙片展平做第二次折疊,使點A落在B處,在紙片上的折痕長記為n.那么m,n之間的關(guān)系是m_____n.(填“>”,“=”或“<” )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是課本中“作一個角等于已知角”的尺規(guī)作圖過程.
已知:∠AOB.
求作:一個角,使它等于∠AOB.
作法:如圖
(1)作射線O'A';
(2)以O為圓心,任意長為半徑作弧,交OA于C,交OB于D;
(3)以O'為圓心,OC為半徑作弧C'E',交O'A'于C';
(4)以C'為圓心,CD為半徑作弧,交弧C'E'于D';
(5)過點D'作射線O'B'.
則∠A'O'B'就是所求作的角.
請回答:該作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于點、點,與軸交于點;直線經(jīng)過點,與軸交于點,點是第一象限內(nèi)拋物線上一動點.
(1)求拋物線的解析式;
(2)若,求的面積;
(3)如圖2,過點作直線軸,過點作于點,將繞點順時針旋轉(zhuǎn),使點的對應(yīng)點恰好落在直線上,同時使點的對應(yīng)點恰好落在坐標軸上,請直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,E為BC的中點,過點E作EF⊥AB于點F,延長DC,交FE的延長線于點G,連結(jié)DF,已知∠FDG=45°
(1)求證:GD=GF.
(2)已知BC=10, .求 CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com