【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同).
(1)A,B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買(mǎi)A,B兩種花草共31棵,且B種花草的數(shù)量少于A(yíng)種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

【答案】
(1)解:設(shè)A種花草每棵的價(jià)格x元,B種花草每棵的價(jià)格y元,根據(jù)題意得:

,

解得: ,

∴A種花草每棵的價(jià)格是20元,B種花草每棵的價(jià)格是5元


(2)解:設(shè)A種花草的數(shù)量為m株,則B種花草的數(shù)量為(31﹣m)株,

∵B種花草的數(shù)量少于A(yíng)種花草的數(shù)量的2倍,

∴31﹣m<2m,

解得:m> ,

∵m是正整數(shù),

∴m最小值=11,

設(shè)購(gòu)買(mǎi)樹(shù)苗總費(fèi)用為W=20m+5(31﹣m)=15m+155,

∵k>0,

∴W隨x的增大而增大,

當(dāng)m=11時(shí),W最小值=15×11+155=320(元).

答:購(gòu)進(jìn)A種花草的數(shù)量為11株、B種20株,費(fèi)用最。蛔钍≠M(fèi)用是320元


【解析】(1)由“A、B兩種花草30棵和15棵,共花費(fèi)675元“可得方程30x+15y=675,由“A、B兩種花草12棵和5棵.兩次共花費(fèi)940元”可得方程12x+5y=940675,聯(lián)立即可解出結(jié)果;(2)由“A,B兩種花草共31棵,且B種花草的數(shù)量少于A(yíng)種花草的數(shù)量的2倍”可得31﹣m<2m,求出m的范圍,列出總費(fèi)用W=20m+5(31﹣m)=15m+155,根據(jù)函數(shù)單調(diào)性 與k的關(guān)系,可知整數(shù)m最小,W最小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)做如下的連續(xù)平移,第次向右平移得到點(diǎn), 次向下平移得到點(diǎn),次向右平移得到點(diǎn),第次向下平移得到點(diǎn)按此規(guī)律平移下去,則的點(diǎn)坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABC中,AC=BC=2 ,點(diǎn)P在以斜邊AB為直徑的半圓上,M為PC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是( )

A. π
B.π
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市大力發(fā)展綠色交通,構(gòu)建公共綠色交通體系,“共享單車(chē)”的投入使用給人們的出行帶來(lái)便利.小明隨機(jī)調(diào)查了若干市民租用共享單車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)這次被調(diào)查的總?cè)藬?shù)是______

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,求表示A組(t≤10分)的扇形圓心角的度數(shù);

(4)如果騎共享單車(chē)的平均速度為12km/h,請(qǐng)估算,在租用共享單車(chē)的市民中,騎車(chē)路程不超過(guò)6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線(xiàn)EF的函數(shù)表達(dá)式.

(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線(xiàn)AE與直線(xiàn)FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,直線(xiàn)OC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,直線(xiàn)AC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,過(guò)Cx軸的平行線(xiàn),交y軸與點(diǎn)B

1)求點(diǎn)A、B、C的坐標(biāo);

2)如圖②,點(diǎn)M、N分別為線(xiàn)段BC,OA上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒15個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,且0t4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知
(1)化簡(jiǎn)A;
(2)若x滿(mǎn)足不等式組 ,且x為整數(shù)時(shí),求A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某項(xiàng)工程由甲、乙兩隊(duì)合做12天可以完成,共需工程費(fèi)用27720元.乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多250元.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

2)若工程管理部門(mén)決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點(diǎn)M,N,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個(gè)數(shù)是( )

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案