【題目】計(jì)算
(1)(3x-2y)2-2x(3x-2y);
(2)(2a+1)(4a2-2a+1);
(3)先化簡(jiǎn),再求值:
(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x,其 中x=-3,.
【答案】(1)3x2-8xy+4y2(2)8a3+1(3)-x2+2xy,-11
【解析】
試題
(1)按“完全平方公式”和“單項(xiàng)式”乘以“多項(xiàng)式”的法則將括號(hào)去掉,再合并同類項(xiàng)即可;
(2)按“多項(xiàng)式”乘以“多項(xiàng)式”的法則將括號(hào)去掉,再合并同類項(xiàng)即可;
(3)先按整式乘法的相關(guān)法則和“乘法公式”對(duì)原式進(jìn)行化簡(jiǎn),然后再代值計(jì)算即可.
試題解析:
(1)原式=9x2-12xy+4y2-6x2+4xy=3x2-8xy+4y2;
(2)原式= 8a3-4a2+2a+4a2-2a+1=8a3+1;
(3)原式=4y2-x2-4y2+4xy-x2+x2-2xy=-x2+2xy,
當(dāng)x=-3,時(shí),
原式=-(-3)2+2×(-3)×=-11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)(4,2),過(guò)點(diǎn)D(0,3)和E(6,0)的直線分別于AB,BC交于點(diǎn)M,N.
(1)求直線DE的解析式和點(diǎn)M的坐標(biāo);
(2)若反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)M,求該反比函數(shù)的解析式,并通過(guò)計(jì)算判斷點(diǎn)N是否在該函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需再添加兩個(gè)條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC與△DEF分別是等邊三角形和等腰直角三角形,AC與DF交于點(diǎn)G,AD與FC分別是△ABC和△DEF的高,線段BC,DE在同一條直線上,則下列說(shuō)法不正確的是( )
A.△AGD∽△CGF
B.△AGD∽△DGC
C. =3
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD在平面直角坐標(biāo)系中,且AD∥x軸,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)B,P都在反比例函數(shù)y= 的圖象上,且P時(shí)動(dòng)點(diǎn),連接OP,CP.
(1)求反比例函數(shù)y= 的函數(shù)表達(dá)式;
(2)當(dāng)點(diǎn)P的縱坐標(biāo)為 時(shí),判斷△OCP的面積與正方形ABCD的面積的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠BAC=90°,過(guò)點(diǎn)C的直線EF∥AB,D是BC上一點(diǎn),連接AD,過(guò)點(diǎn)D分別作GD⊥AD,HD⊥BC,交EF和AC于點(diǎn)G,H,連接AG.
(1)當(dāng)∠ACB=30°時(shí),如圖1所示.
①求證:△GCD∽△AHD;
②試判斷AD與DG之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)tan∠ACB= 時(shí),如圖2所示,請(qǐng)你直接寫出AD與DG之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)已知﹣ 與xnym+n是同類項(xiàng),求m、n的值;
(2)先化簡(jiǎn)后求值:( ) ,其中a= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com