【題目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)(,3)(2)(3)存在,( , )
【解析】解:(1)過C作CH⊥OA于H,
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,∴OA=。
∵將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處,
∴OC=OA=,∠AOC=60°。
∴OH=,CH="3" 。
∴C的坐標(biāo)是(,3)。
(2)∵拋物線經(jīng)過C(,3)、A(,0)兩點,
∴,解得。∴此拋物線的解析式為
(3)存在。
∵的頂點坐標(biāo)為(,3),即為點C。
MP⊥x軸,設(shè)垂足為N,PN=t,
∵∠BOA=300,所以ON=
∴P()
作PQ⊥CD,垂足為Q,ME⊥CD,垂足為E。
把代入得: 。
∴ M(, ),E(, )。
同理:Q(,t),D(,1)。
要使四邊形CDPM為等腰梯形,只需CE=QD,
即,解得: , (舍去)。
∴ P點坐標(biāo)為(, )。
∴ 存在滿足條件的點P,使得四邊形CDPM為等腰梯形,此時P點的坐為(, )。
(1)過C作CH⊥OA于H,根據(jù)折疊得到OC=OA=4,∠A0C=60°,求出OH和CH即可。
(2)把C(,3)、A(,0)代入得到方程組,求出方程組的解即可。
(3)如圖,根據(jù)等腰梯形的判定,只要CE=QD即可,據(jù)此列式求解。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A.有公共頂點的兩個角是對頂角
B.多項式x2﹣4x因式分解的結(jié)果是x(x2﹣4)
C.a+a=a2
D.一元二次方程x2﹣x+2=0無實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形AOBC在直角坐標(biāo)系中,點A在y軸上,點B在x軸上,已知點C的坐標(biāo)是(8,4).
(1)求對角線AB所在直線的函數(shù)關(guān)系式;
(2)對角線AB的垂直平分線MN交x軸于點M,連接AM,求線段AM的長;
(3)若點P是直線AB上的一個動點,當(dāng)△PAM的面積與長方形OABC的面積相等時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-(x-m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點,BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( )
A. 4:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com