【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過(guò)A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長(zhǎng)和弧DE的長(zhǎng).

【答案】
(1)解:⊙O即為所求:


(2)解:連接OD,

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠BAC,

∴∠BAD=∠OAD,

∴∠BAD=∠ODA,

∴OD∥AB,

∴∠ODC=∠ABC=90°,

∵OD是半徑,

∴BC與⊙O相切;


(3)連接OE,過(guò)點(diǎn)O作OF⊥AB于點(diǎn)F,

∵AE=2,

∴由垂徑定理定理可知:AF=1,

∵CD=2BD,

= = ,

∵OF∥BC,

∴△AOF∽△ACB,

,

∵OF=BD,

= ,

=

∴AB=3,

∴BE=AB﹣AE=1,

∵OD∥AB,

∴△OCD∽△ACB,

= ,

∴OD=2,

∴OA=OD=AE,

∴△AOE是等邊三角形,

∴∠AEO=60°

∵OD∥AB,

∴∠EOD=60°,

的長(zhǎng)度是: =


【解析】(1)要使⊙O過(guò)A、D兩點(diǎn),即OA=OD,所以點(diǎn)O在線段AD的垂直平分線上,且圓心O在AC邊上,所以作出AD的垂直平分線與AC的交點(diǎn)即為點(diǎn)O;(2)要證明BC與⊙O相切,連接OD后,只需要證明∠ODC=90°即可;(3)由于AE是⊙O的弦,可過(guò)點(diǎn)O作OF⊥AE于點(diǎn)F,然后利用垂徑定理可知AF=1,利用△AOF∽△ACB求出AB的值,所以BE=AB﹣AE.再利用△OCD∽△ACB,求出半徑OD,可知△AOE是等邊三角形,所以 所對(duì)的圓心角為60°,利用弧長(zhǎng)公式即可求出 的長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,把∠α=60°的一個(gè)單獨(dú)的菱形稱作一個(gè)基本圖形,將此基本圖形不斷的復(fù)制并平移,使得下一個(gè)菱形的一個(gè)頂點(diǎn)與前一個(gè)菱形的中線重合,這樣得到圖②,圖③,…
(1)觀察以上圖形并完成下表:

圖形名稱

基本圖形的個(gè)數(shù)

菱形的個(gè)數(shù)

圖①

1

1

圖②

2

3

圖③

3

7

圖④

4

猜想:在圖(n)中,菱形的個(gè)數(shù)為(用含有n(n≥3)的代數(shù)式表示);
(2)如圖,將圖(n)放在直角坐標(biāo)系中,設(shè)其中第一個(gè)基本圖的對(duì)稱中心O1的坐標(biāo)為(x1 , 1),則x1=;第2017個(gè)基本圖形的中心O2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考前各校初三學(xué)生都要進(jìn)行體育測(cè)試,某次中考體育測(cè)試設(shè)有A、B兩處考點(diǎn),甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處進(jìn)行中考體育測(cè)試,請(qǐng)用表格或樹狀圖分析:
(1)求甲、乙、丙三名學(xué)生在同一處進(jìn)行體育測(cè)試的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處進(jìn)行體育測(cè)試的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,直線y=﹣x+3與y=3x﹣5相交于C點(diǎn),分別與x軸交于A、B兩點(diǎn).P、Q分別為直線y=﹣x+3與y=3x﹣5上的點(diǎn).
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點(diǎn)成中心對(duì)稱,求P點(diǎn)的坐標(biāo);
(3)若△QPC≌△ABC,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點(diǎn)P,滿足SAOP=1,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于(
A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列圖形是將正三角形按一定規(guī)律排列,則第5個(gè)圖形中所有正三角形的個(gè)數(shù)有

查看答案和解析>>

同步練習(xí)冊(cè)答案