【題目】如圖,⊙O中,弦CD與直徑AB交于點(diǎn)H.若DH=CH=,BD=4,
(1)AB的長(zhǎng)為______.
(2)弧BD的長(zhǎng)為________.
【答案】(1)8;(2).
【解析】
(1)根據(jù)垂徑定理和勾股定理得出即可;根據(jù)勾股定理求出BH,根據(jù)勾股定理得出關(guān)于R的方程,求出R即可.
(1)連接OD,根據(jù)垂弦定理推論知道Rt△BHD中,BD=4,HD= ,
由勾股定理得:BH==2
∵AB⊥CD,
∴∠BHD=90°,
設(shè)⊙O的半徑為R,則AB=2R,OB=OD=R,
在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,
即(R﹣1)2+()2=R2,
解得:R=4,
∴AB=2×4=8.
故答案為:8.
(2)由(1)知道OB=OD=BD,所以弧BD所對(duì)的圓心角為60度,弧長(zhǎng)為:
L===.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有4張卡片.4張卡片的正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子任意抽取一張卡片,恰好抽到標(biāo)有奇數(shù)卡片的概率是: ;
(2)先從盒子中任意抽取一張卡片,再?gòu)挠嘞碌?/span>3張卡片中任意抽取一張卡片,求抽取的2張卡片標(biāo)有數(shù)字之和大于4的概率(請(qǐng)用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系系中,一次函數(shù)與反比例函數(shù)的圖象交于第二、第四象限,兩點(diǎn),過點(diǎn)作軸,垂足為,,,且點(diǎn)的坐標(biāo)為.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)將一次函數(shù)向下移動(dòng)個(gè)單位的函數(shù)記為,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在圖(1)與圖(2)中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,△AOB的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)將△OAB關(guān)于點(diǎn)P對(duì)稱,在圖(1)中畫出對(duì)稱后的圖形△O′A′B′,并涂黑;
(2)先畫出△OAB關(guān)于y軸的軸對(duì)稱圖形△O′A′B′,然后將△O′A′B′向右平移2個(gè)單位,再向上平移3個(gè)單位,在圖(2)中畫出平移后的圖形△O″A″B″,并涂黑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BCD和∠ABC的平分線分別交AD于E,G兩點(diǎn),CE,BG相交于點(diǎn)O
(1)求證:AG=DE.
(2)已知AB=4,AD=5,
①求的值.
②求四邊形ABOE的面積與△BOC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x22x+c的頂點(diǎn)A在直線l:y=x5上.
(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀;
(3)在直線l上是否存在一點(diǎn)P,使以點(diǎn)P、A、B、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣5,0),對(duì)稱軸為直線x=﹣2,給出四個(gè)結(jié)論:①abc>0;②4a+b=0;③若點(diǎn)B(﹣3,y1)、C(﹣4,y2)為函數(shù)圖象上的兩點(diǎn),則y2<y1;④a+b+c=0.其中,正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com